* * * * * * * * * * * * * * * * * * * v [x] [y] [z] - Define a vertex with floating-point * coords (x,y,z). * mtllib [filename] - Load materials from an external .mtl * file. * usemtl [name] - Use the named material (loaded from a * .mtl file) for the next floor, ceiling, * or wall. * ambientLightIntensity * [value] - Defines the ambient light intensity * for the next room, from 0 to 1. * pointlight [v] - Defines a point light located at the * [intensity] specfied vector. Optionally, light * [falloff] intesity and falloff distance can * be specified. * player [v] [angle] - Specifies the starting location of the * player and optionally a starting * angle, in radians, around the y-axis. * obj [uniqueName] - Defines an object from an external * [filename] [v] OBJ file. The unique name allows this * [angle] object to be uniquely identfied, but * can be "null" if no unique name is * needed. The filename is an external * OBJ file. Optionally, the starting * angle, in radians, around the y-axis * can be specified. * room [name] - Defines a new room, optionally giving * the room a name. A room consists of * vertical walls, a horizontal floor * and a horizontal ceiling. Concave rooms * are currently not supported, but can be * simulated by adjacent convex rooms. * floor [height] - Defines the height of the floor of * the current room, using the current * material. The current material can * be null, in which case no floor * polygon is created. The floor can be * above the ceiling, in which case a * "pillar" or "block" structure is * created, rather than a "room". * ceil [height] - Defines the height of the ceiling of * the current room, using the current * material. The current material can * be null, in which case no ceiling * polygon is created. The ceiling can be * below the floor, in which case a * "pillar" or "block" structure is * created, rather than a "room". * wall [x] [z] - Defines a wall vertex in a room using * [bottom] [top] the specified x and z coordinates. * Walls should be defined in clockwise * order. If "bottom" and "top" is not * defined, the floor and ceiling height * are used. If the current material is * null, or bottom is equal to top, no * wall polygon is created. * * * * * * * * * * * * * * * * * * **/ class MapLoader extends ObjectLoader { private BSPTreeBuilder builder; private Map loadedObjects; private Transform3D playerStart; private RoomDef currentRoom; private List rooms; private List mapObjects; // use a separate ObjectLoader for objects private ObjectLoader objectLoader; /** * Creates a new MapLoader using the default BSPTreeBuilder. */ public MapLoader() { this(null); } /** * Creates a new MapLoader using the specified BSPTreeBuilder. If the * builder is null, a default BSPTreeBuilder is created. */ public MapLoader(BSPTreeBuilder builder) { if (builder == null) { this.builder = new BSPTreeBuilder(); } else { this.builder = builder; } parsers.put("map", new MapLineParser()); objectLoader = new ObjectLoader(); loadedObjects = new HashMap(); rooms = new ArrayList(); mapObjects = new ArrayList(); } /** * Loads a map file and creates a BSP tree. Objects created can be retrieved * from the getObjectsInMap() method. */ public BSPTree loadMap(String filename) throws IOException { currentRoom = null; rooms.clear(); vertices.clear(); mapObjects.clear(); playerStart = new Transform3D(); path = new File(filename).getParentFile(); parseFile(filename); return createBSPTree(); } /** * Creates a BSP tree from the rooms defined in the map file. */ protected BSPTree createBSPTree() { // extract all polygons List allPolygons = new ArrayList(); for (int i = 0; i < rooms.size(); i++) { RoomDef room = (RoomDef) rooms.get(i); allPolygons.addAll(room.createPolygons()); } // build the tree BSPTree tree = builder.build(allPolygons); // create polygon surfaces based on the lights. tree.createSurfaces(lights); return tree; } /** * Gets a list of all objects degined in the map file. */ public List getObjectsInMap() { return mapObjects; } /** * Gets the player start location defined in the map file. */ public Transform3D getPlayerStartLocation() { return playerStart; } /** * Sets the lights used for OBJ objects. */ public void setObjectLights(List lights, float ambientLightIntensity) { objectLoader.setLights(lights, ambientLightIntensity); } /** * Parses a line in a MAP file. */ protected class MapLineParser implements LineParser { public void parseLine(String line) throws IOException, NoSuchElementException { StringTokenizer tokenizer = new StringTokenizer(line); String command = tokenizer.nextToken(); if (command.equals("v")) { // create a new vertex vertices.add(new Vector3D(Float.parseFloat(tokenizer .nextToken()), Float.parseFloat(tokenizer.nextToken()), Float.parseFloat(tokenizer.nextToken()))); } else if (command.equals("mtllib")) { // load materials from file String name = tokenizer.nextToken(); parseFile(name); } else if (command.equals("usemtl")) { // define the current material String name = tokenizer.nextToken(); if ("null".equals(name)) { currentMaterial = new Material(); } else { currentMaterial = (Material) materials.get(name); if (currentMaterial == null) { currentMaterial = new Material(); System.out.println("no material: " + name); } } } else if (command.equals("pointlight")) { // create a point light Vector3D loc = getVector(tokenizer.nextToken()); float intensity = 1; float falloff = PointLight3D.NO_DISTANCE_FALLOFF; if (tokenizer.hasMoreTokens()) { intensity = Float.parseFloat(tokenizer.nextToken()); } if (tokenizer.hasMoreTokens()) { falloff = Float.parseFloat(tokenizer.nextToken()); } lights.add(new PointLight3D(loc.x, loc.y, loc.z, intensity, falloff)); } else if (command.equals("ambientLightIntensity")) { // define the ambient light intensity ambientLightIntensity = Float.parseFloat(tokenizer.nextToken()); } else if (command.equals("player")) { // define the player start location playerStart.getLocation().setTo( getVector(tokenizer.nextToken())); if (tokenizer.hasMoreTokens()) { playerStart.setAngleY(Float.parseFloat(tokenizer .nextToken())); } } else if (command.equals("obj")) { // create a new obj from an object file String uniqueName = tokenizer.nextToken(); String filename = tokenizer.nextToken(); // check if the object is already loaded PolygonGroup object = (PolygonGroup) loadedObjects .get(filename); if (object == null) { File file = new File(path, filename); String filePath = file.getPath(); object = objectLoader.loadObject(filePath); loadedObjects.put(filename, object); } Vector3D loc = getVector(tokenizer.nextToken()); PolygonGroup mapObject = (PolygonGroup) object.clone(); mapObject.getTransform().getLocation().setTo(loc); if (!uniqueName.equals("null")) { mapObject.setName(uniqueName); } if (tokenizer.hasMoreTokens()) { mapObject.getTransform().setAngleY( Float.parseFloat(tokenizer.nextToken())); } mapObjects.add(mapObject); } else if (command.equals("room")) { // start a new room currentRoom = new RoomDef(ambientLightIntensity); rooms.add(currentRoom); } else if (command.equals("floor")) { // define a room's floor float y = Float.parseFloat(tokenizer.nextToken()); currentRoom.setFloor(y, currentMaterial.texture); } else if (command.equals("ceil")) { // define a room's ceiling float y = Float.parseFloat(tokenizer.nextToken()); currentRoom.setCeil(y, currentMaterial.texture); } else if (command.equals("wall")) { // define a wall vertex in a room. float x = Float.parseFloat(tokenizer.nextToken()); float z = Float.parseFloat(tokenizer.nextToken()); if (tokenizer.hasMoreTokens()) { float bottom = Float.parseFloat(tokenizer.nextToken()); float top = Float.parseFloat(tokenizer.nextToken()); currentRoom.addVertex(x, z, bottom, top, currentMaterial.texture); } else { currentRoom.addVertex(x, z, currentMaterial.texture); } } else { System.out.println("Unknown command: " + command); } } } } /** * The ObjectLoader class loads a subset of the Alias|Wavefront OBJ file * specification. * * Lines that begin with '#' are comments. * * OBJ file keywords: * *
* * mtllib [filename] - Load materials from an external .mtl * file. * v [x] [y] [z] - Define a vertex with floating-point * coords (x,y,z). * f [v1] [v2] [v3] ... - Define a new face. a face is a flat, * convex polygon with vertices in * counter-clockwise order. Positive * numbers indicate the index of the * vertex that is defined in the file. * Negative numbers indicate the vertex * defined relative to last vertex read. * For example, 1 indicates the first * vertex in the file, -1 means the last * vertex read, and -2 is the vertex * before that. * g [name] - Define a new group by name. The faces * following are added to this group. * usemtl [name] - Use the named material (loaded from a * .mtl file) for the faces in this group. * ** * MTL file keywords: * *
* * newmtl [name] - Define a new material by name. * map_Kd [filename] - Give the material a texture map. * **/ class ObjectLoader { /** * The Material class wraps a ShadedTexture. */ public static class Material { public File sourceFile; public ShadedTexture texture; } /** * A LineParser is an interface to parse a line in a text file. Separate * LineParsers and are used for OBJ and MTL files. */ protected interface LineParser { public void parseLine(String line) throws IOException, NumberFormatException, NoSuchElementException; } protected File path; protected List vertices; protected Material currentMaterial; protected HashMap materials; protected List lights; protected float ambientLightIntensity; protected HashMap parsers; private PolygonGroup object; private PolygonGroup currentGroup; /** * Creates a new ObjectLoader. */ public ObjectLoader() { materials = new HashMap(); vertices = new ArrayList(); parsers = new HashMap(); parsers.put("obj", new ObjLineParser()); parsers.put("mtl", new MtlLineParser()); currentMaterial = null; setLights(new ArrayList(), 1); } /** * Sets the lights used for the polygons in the parsed objects. After * calling this method calls to loadObject use these lights. */ public void setLights(List lights, float ambientLightIntensity) { this.lights = lights; this.ambientLightIntensity = ambientLightIntensity; } /** * Loads an OBJ file as a PolygonGroup. */ public PolygonGroup loadObject(String filename) throws IOException { File file = new File(filename); object = new PolygonGroup(); object.setFilename(file.getName()); path = file.getParentFile(); vertices.clear(); currentGroup = object; parseFile(filename); return object; } /** * Gets a Vector3D from the list of vectors in the file. Negative indeces * count from the end of the list, postive indeces count from the beginning. * 1 is the first index, -1 is the last. 0 is invalid and throws an * exception. */ protected Vector3D getVector(String indexStr) { int index = Integer.parseInt(indexStr); if (index < 0) { index = vertices.size() + index + 1; } return (Vector3D) vertices.get(index - 1); } /** * Parses an OBJ (ends with ".obj") or MTL file (ends with ".mtl"). */ protected void parseFile(String filename) throws IOException { // get the file relative to the source path File file = new File(path, filename); BufferedReader reader = new BufferedReader(new FileReader(file)); // get the parser based on the file extention LineParser parser = null; int extIndex = filename.lastIndexOf('.'); if (extIndex != -1) { String ext = filename.substring(extIndex + 1); parser = (LineParser) parsers.get(ext.toLowerCase()); } if (parser == null) { parser = (LineParser) parsers.get("obj"); } // parse every line in the file while (true) { String line = reader.readLine(); // no more lines to read if (line == null) { reader.close(); return; } line = line.trim(); // ignore blank lines and comments if (line.length() > 0 && !line.startsWith("#")) { // interpret the line try { parser.parseLine(line); } catch (NumberFormatException ex) { throw new IOException(ex.getMessage()); } catch (NoSuchElementException ex) { throw new IOException(ex.getMessage()); } } } } /** * Parses a line in an OBJ file. */ protected class ObjLineParser implements LineParser { public void parseLine(String line) throws IOException, NumberFormatException, NoSuchElementException { StringTokenizer tokenizer = new StringTokenizer(line); String command = tokenizer.nextToken(); if (command.equals("v")) { // create a new vertex vertices.add(new Vector3D(Float.parseFloat(tokenizer .nextToken()), Float.parseFloat(tokenizer.nextToken()), Float.parseFloat(tokenizer.nextToken()))); } else if (command.equals("f")) { // create a new face (flat, convex polygon) List currVertices = new ArrayList(); while (tokenizer.hasMoreTokens()) { String indexStr = tokenizer.nextToken(); // ignore texture and normal coords int endIndex = indexStr.indexOf('/'); if (endIndex != -1) { indexStr = indexStr.substring(0, endIndex); } currVertices.add(getVector(indexStr)); } // create textured polygon Vector3D[] array = new Vector3D[currVertices.size()]; currVertices.toArray(array); TexturedPolygon3D poly = new TexturedPolygon3D(array); // set the texture ShadedSurface.createShadedSurface(poly, currentMaterial.texture, lights, ambientLightIntensity); // add the polygon to the current group currentGroup.addPolygon(poly); } else if (command.equals("g")) { // define the current group if (tokenizer.hasMoreTokens()) { String name = tokenizer.nextToken(); currentGroup = new PolygonGroup(name); } else { currentGroup = new PolygonGroup(); } object.addPolygonGroup(currentGroup); } else if (command.equals("mtllib")) { // load materials from file String name = tokenizer.nextToken(); parseFile(name); } else if (command.equals("usemtl")) { // define the current material String name = tokenizer.nextToken(); currentMaterial = (Material) materials.get(name); if (currentMaterial == null) { System.out.println("no material: " + name); } } else { // unknown command - ignore it } } } /** * Parses a line in a material MTL file. */ protected class MtlLineParser implements LineParser { public void parseLine(String line) throws NoSuchElementException { StringTokenizer tokenizer = new StringTokenizer(line); String command = tokenizer.nextToken(); if (command.equals("newmtl")) { // create a new material if needed String name = tokenizer.nextToken(); currentMaterial = (Material) materials.get(name); if (currentMaterial == null) { currentMaterial = new Material(); materials.put(name, currentMaterial); } } else if (command.equals("map_Kd")) { // give the current material a texture String name = tokenizer.nextToken(); File file = new File(path, name); if (!file.equals(currentMaterial.sourceFile)) { currentMaterial.sourceFile = file; currentMaterial.texture = (ShadedTexture) Texture .createTexture(file.getPath(), true); } } else { // unknown command - ignore it } } } } class BSPLine extends Line2D.Float { public static final int BACK = -1; public static final int COLLINEAR = 0; public static final int FRONT = 1; public static final int SPANNING = 2; /** * X coordinate of the line normal. */ public float nx; /** * Y coordinate of the line normal. */ public float ny; /** * Top-most location of a line representing a wall. */ public float top; /** * Bottom-most location of a line representing a wall. */ public float bottom; /** * Creates a new line from (0,0) to (0,0) */ public BSPLine() { super(); } /** * Creates a new BSPLine based on the specified BSPPolygon (only if the * BSPPolygon is a vertical wall). */ public BSPLine(BSPPolygon poly) { setTo(poly); } /** * Creates a new BSPLine based on the specified coordinates. */ public BSPLine(float x1, float y1, float x2, float y2) { setLine(x1, y1, x2, y2); } /** * Sets this BSPLine to the specified BSPPolygon (only if the BSPPolygon is * a vertical wall). */ public void setTo(BSPPolygon poly) { if (!poly.isWall()) { throw new IllegalArgumentException("BSPPolygon not a wall"); } top = java.lang.Float.MIN_VALUE; bottom = java.lang.Float.MAX_VALUE; // find the two points (ignoring y) that are farthest apart float distance = -1; for (int i = 0; i < poly.getNumVertices(); i++) { Vector3D v1 = poly.getVertex(i); top = Math.max(top, v1.y); bottom = Math.min(bottom, v1.y); for (int j = 0; j < poly.getNumVertices(); j++) { Vector3D v2 = poly.getVertex(j); float newDist = (float) Point2D.distanceSq(v1.x, v1.z, v2.x, v2.z); if (newDist > distance) { distance = newDist; x1 = v1.x; y1 = v1.z; x2 = v2.x; y2 = v2.z; } } } nx = poly.getNormal().x; ny = poly.getNormal().z; } /** * Calculates the normal to this line. */ public void calcNormal() { nx = y2 - y1; ny = x1 - x2; } /** * Normalizes the normal of this line (make the normal's length 1). */ public void normalize() { float length = (float) Math.sqrt(nx * nx + ny * ny); nx /= length; ny /= length; } public void setLine(float x1, float y1, float x2, float y2) { super.setLine(x1, y1, x2, y2); calcNormal(); } public void setLine(double x1, double y1, double x2, double y2) { super.setLine(x1, y1, x2, y2); calcNormal(); } /** * Flips this line so that the end points are reversed (in other words, * (x1,y1) becomes (x2,y2) and vice versa) and the normal is changed to * point the opposite direction. */ public void flip() { float tx = x1; float ty = y1; x1 = x2; y1 = y2; x2 = tx; y2 = ty; nx = -nx; ny = -ny; } /** * Sets the top and bottom height of this "wall". */ public void setHeight(float top, float bottom) { this.top = top; this.bottom = bottom; } /** * Returns true if the endpoints of this line match the endpoints of the * specified line. Ignores normal and height values. */ public boolean equals(BSPLine line) { return (x1 == line.x1 && x2 == line.x2 && y1 == line.y1 && y2 == line.y2); } /** * Returns true if the endpoints of this line match the endpoints of the * specified line, ignoring endpoint order (if the first point of this line * is equal to the second point of the specified line, and vice versa, * returns true). Ignores normal and height values. */ public boolean equalsIgnoreOrder(BSPLine line) { return equals(line) || ((x1 == line.x2 && x2 == line.x1 && y1 == line.y2 && y2 == line.y1)); } public String toString() { return "(" + x1 + ", " + y1 + ")->" + "(" + x2 + "," + y2 + ")" + " bottom: " + bottom + " top: " + top; } /** * Gets the side of this line the specified point is on. This method treats * the line as 1-unit thick, so points within this 1-unit border are * considered collinear. For this to work correctly, the normal of this line * must be normalized, either by setting this line to a polygon or by * calling normalize(). Returns either FRONT, BACK, or COLLINEAR. */ public int getSideThick(float x, float y) { int frontSide = getSideThin(x - nx / 2, y - ny / 2); if (frontSide == FRONT) { return FRONT; } else if (frontSide == BACK) { int backSide = getSideThin(x + nx / 2, y + ny / 2); if (backSide == BACK) { return BACK; } } return COLLINEAR; } /** * Gets the side of this line the specified point is on. Because of floating * point inaccuracy, a collinear line will be rare. For this to work * correctly, the normal of this line must be normalized, either by setting * this line to a polygon or by calling normalize(). Returns either FRONT, * BACK, or COLLINEAR. */ public int getSideThin(float x, float y) { // dot product between vector to the point and the normal float side = (x - x1) * nx + (y - y1) * ny; return (side < 0) ? BACK : (side > 0) ? FRONT : COLLINEAR; } /** * Gets the side of this line that the specified line segment is on. Returns * either FRONT, BACK, COLINEAR, or SPANNING. */ public int getSide(Line2D.Float segment) { if (this == segment) { return COLLINEAR; } int p1Side = getSideThick(segment.x1, segment.y1); int p2Side = getSideThick(segment.x2, segment.y2); if (p1Side == p2Side) { return p1Side; } else if (p1Side == COLLINEAR) { return p2Side; } else if (p2Side == COLLINEAR) { return p1Side; } else { return SPANNING; } } /** * Gets the side of this line that the specified polygon is on. Returns * either FRONT, BACK, COLINEAR, or SPANNING. */ public int getSide(BSPPolygon poly) { boolean onFront = false; boolean onBack = false; // check every point for (int i = 0; i < poly.getNumVertices(); i++) { Vector3D v = poly.getVertex(i); int side = getSideThick(v.x, v.z); if (side == BSPLine.FRONT) { onFront = true; } else if (side == BSPLine.BACK) { onBack = true; } } // classify the polygon if (onFront && onBack) { return BSPLine.SPANNING; } else if (onFront) { return BSPLine.FRONT; } else if (onBack) { return BSPLine.BACK; } else { return BSPLine.COLLINEAR; } } /** * Returns the fraction of intersection along this line. Returns a value * from 0 to 1 if the segments intersect. For example, a return value of 0 * means the intersection occurs at point (x1, y1), 1 means the intersection * occurs at point (x2, y2), and .5 mean the intersection occurs halfway * between the two endpoints of this line. Returns -1 if the lines are * parallel. */ public float getIntersection(Line2D.Float line) { // The intersection point I, of two vectors, A1->A2 and // B1->B2, is: // I = A1 + Ua * (A2 - A1) // I = B1 + Ub * (B2 - B1) // // Solving for Ua gives us the following formula. // Ua is returned. float denominator = (line.y2 - line.y1) * (x2 - x1) - (line.x2 - line.x1) * (y2 - y1); // check if the two lines are parallel if (denominator == 0) { return -1; } float numerator = (line.x2 - line.x1) * (y1 - line.y1) - (line.y2 - line.y1) * (x1 - line.x1); return numerator / denominator; } /** * Returns the interection point of this line with the specified line. */ public Point2D.Float getIntersectionPoint(Line2D.Float line) { return getIntersectionPoint(line, null); } /** * Returns the interection of this line with the specified line. If * interesection is null, a new point is created. */ public Point2D.Float getIntersectionPoint(Line2D.Float line, Point2D.Float intersection) { if (intersection == null) { intersection = new Point2D.Float(); } float fraction = getIntersection(line); intersection.setLocation(x1 + fraction * (x2 - x1), y1 + fraction * (y2 - y1)); return intersection; } } /** * The BSPTree class represents a 2D Binary Space Partitioned tree of polygons. * The BSPTree is built using a BSPTreeBuilder class, and can be travered using * BSPTreeTraverser class. */ class BSPTree { /** * A Node of the tree. All children of the node are either to the front of * back of the node's partition. */ public static class Node { public Node front; public Node back; public BSPLine partition; public List polygons; } /** * A Leaf of the tree. A leaf has no partition or front or back nodes. */ public static class Leaf extends Node { public float floorHeight; public float ceilHeight; public boolean isBack; public List portals; public Rectangle bounds; } private Node root; /** * Creates a new BSPTree with the specified root node. */ public BSPTree(Node root) { this.root = root; } /** * Gets the root node of this tree. */ public Node getRoot() { return root; } /** * Calculates the 2D boundary of all the polygons in this BSP tree. Returns * a rectangle of the bounds. */ public Rectangle calcBounds() { final Point min = new Point(Integer.MAX_VALUE, Integer.MAX_VALUE); final Point max = new Point(Integer.MIN_VALUE, Integer.MIN_VALUE); BSPTreeTraverser traverser = new BSPTreeTraverser(); traverser.setListener(new BSPTreeTraverseListener() { public boolean visitPolygon(BSPPolygon poly, boolean isBack) { for (int i = 0; i < poly.getNumVertices(); i++) { Vector3D v = poly.getVertex(i); int x = (int) Math.floor(v.x); int y = (int) Math.floor(v.z); min.x = Math.min(min.x, x); max.x = Math.max(max.x, x); min.y = Math.min(min.y, y); max.y = Math.max(max.y, y); } return true; } }); traverser.traverse(this); return new Rectangle(min.x, min.y, max.x - min.x, max.y - min.y); } /** * Gets the leaf the x,z coordinates are in. */ public Leaf getLeaf(float x, float z) { return getLeaf(root, x, z); } protected Leaf getLeaf(Node node, float x, float z) { if (node == null || node instanceof Leaf) { return (Leaf) node; } int side = node.partition.getSideThin(x, z); if (side == BSPLine.BACK) { return getLeaf(node.back, x, z); } else { return getLeaf(node.front, x, z); } } /** * Gets the Node that is collinear with the specified partition, or null if * no such node exists. */ public Node getCollinearNode(BSPLine partition) { return getCollinearNode(root, partition); } protected Node getCollinearNode(Node node, BSPLine partition) { if (node == null || node instanceof Leaf) { return null; } int side = node.partition.getSide(partition); if (side == BSPLine.COLLINEAR) { return node; } if (side == BSPLine.FRONT) { return getCollinearNode(node.front, partition); } else if (side == BSPLine.BACK) { return getCollinearNode(node.back, partition); } else { // BSPLine.SPANNING: first try front, then back Node front = getCollinearNode(node.front, partition); if (front != null) { return front; } else { return getCollinearNode(node.back, partition); } } } /** * Gets the Leaf in front of the specified partition. */ public Leaf getFrontLeaf(BSPLine partition) { return getLeaf(root, partition, BSPLine.FRONT); } /** * Gets the Leaf in back of the specified partition. */ public Leaf getBackLeaf(BSPLine partition) { return getLeaf(root, partition, BSPLine.BACK); } protected Leaf getLeaf(Node node, BSPLine partition, int side) { if (node == null || node instanceof Leaf) { return (Leaf) node; } int segSide = node.partition.getSide(partition); if (segSide == BSPLine.COLLINEAR) { segSide = side; } if (segSide == BSPLine.FRONT) { return getLeaf(node.front, partition, side); } else if (segSide == BSPLine.BACK) { return getLeaf(node.back, partition, side); } else { // BSPLine.SPANNING // shouldn't happen return null; } } /** * Creates surface textures for every polygon in this tree. */ public void createSurfaces(final List lights) { BSPTreeTraverser traverser = new BSPTreeTraverser(); traverser.setListener(new BSPTreeTraverseListener() { public boolean visitPolygon(BSPPolygon poly, boolean isBack) { Texture texture = poly.getTexture(); if (texture instanceof ShadedTexture) { ShadedSurface.createShadedSurface(poly, (ShadedTexture) texture, poly.getTextureBounds(), lights, poly.getAmbientLightIntensity()); } return true; } }); traverser.traverse(this); } } /** * A ShadedSurface is a pre-shaded Texture that maps onto a polygon. */ final class ShadedSurface extends Texture { public static final int SURFACE_BORDER_SIZE = 1; public static final int SHADE_RES_BITS = 4; public static final int SHADE_RES = 1 << SHADE_RES_BITS; public static final int SHADE_RES_MASK = SHADE_RES - 1; public static final int SHADE_RES_SQ = SHADE_RES * SHADE_RES; public static final int SHADE_RES_SQ_BITS = SHADE_RES_BITS * 2; private short[] buffer; private SoftReference bufferReference; private boolean dirty; private ShadedTexture sourceTexture; private Rectangle3D sourceTextureBounds; private Rectangle3D surfaceBounds; private byte[] shadeMap; private int shadeMapWidth; private int shadeMapHeight; // for incrementally calculating shade values private int shadeValue; private int shadeValueInc; /** * Creates a ShadedSurface with the specified width and height. */ public ShadedSurface(int width, int height) { this(null, width, height); } /** * Creates a ShadedSurface with the specified buffer, width and height. */ public ShadedSurface(short[] buffer, int width, int height) { super(width, height); this.buffer = buffer; bufferReference = new SoftReference(buffer); sourceTextureBounds = new Rectangle3D(); dirty = true; } /** * Creates a ShadedSurface for the specified polygon. The shade map is * created from the specified list of point lights and ambient light * intensity. */ public static void createShadedSurface(TexturedPolygon3D poly, ShadedTexture texture, List lights, float ambientLightIntensity) { // create the texture bounds Vector3D origin = poly.getVertex(0); Vector3D dv = new Vector3D(poly.getVertex(1)); dv.subtract(origin); Vector3D du = new Vector3D(); du.setToCrossProduct(poly.getNormal(), dv); Rectangle3D bounds = new Rectangle3D(origin, du, dv, texture.getWidth(), texture.getHeight()); createShadedSurface(poly, texture, bounds, lights, ambientLightIntensity); } /** * Creates a ShadedSurface for the specified polygon. The shade map is * created from the specified list of point lights and ambient light * intensity. */ public static void createShadedSurface(TexturedPolygon3D poly, ShadedTexture texture, Rectangle3D textureBounds, List lights, float ambientLightIntensity) { // create the surface bounds poly.setTexture(texture, textureBounds); Rectangle3D surfaceBounds = poly.calcBoundingRectangle(); // give the surfaceBounds a border to correct for // slight errors when texture mapping Vector3D du = new Vector3D(surfaceBounds.getDirectionU()); Vector3D dv = new Vector3D(surfaceBounds.getDirectionV()); du.multiply(SURFACE_BORDER_SIZE); dv.multiply(SURFACE_BORDER_SIZE); surfaceBounds.getOrigin().subtract(du); surfaceBounds.getOrigin().subtract(dv); int width = (int) Math.ceil(surfaceBounds.getWidth() + SURFACE_BORDER_SIZE * 2); int height = (int) Math.ceil(surfaceBounds.getHeight() + SURFACE_BORDER_SIZE * 2); surfaceBounds.setWidth(width); surfaceBounds.setHeight(height); // create the shaded surface texture ShadedSurface surface = new ShadedSurface(width, height); surface.setTexture(texture, textureBounds); surface.setSurfaceBounds(surfaceBounds); // create the surface's shade map surface.buildShadeMap(lights, ambientLightIntensity); // set the polygon's surface poly.setTexture(surface, surfaceBounds); } /** * Gets the 16-bit color of the pixel at location (x,y) in the bitmap. The x * and y values are assumbed to be within the bounds of the surface; * otherwise an ArrayIndexOutOfBoundsException occurs. */ public short getColor(int x, int y) { //try { return buffer[x + y * width]; //} //catch (ArrayIndexOutOfBoundsException ex) { // return -2048; //} } /** * Gets the 16-bit color of the pixel at location (x,y) in the bitmap. The x * and y values are checked to be within the bounds of the surface, and if * not, the pixel on the edge of the texture is returned. */ public short getColorChecked(int x, int y) { if (x < 0) { x = 0; } else if (x >= width) { x = width - 1; } if (y < 0) { y = 0; } else if (y >= height) { y = height - 1; } return getColor(x, y); } /** * Marks whether this surface is dirty. Surfaces marked as dirty may be * cleared externally. */ public void setDirty(boolean dirty) { this.dirty = dirty; } /** * Checks wether this surface is dirty. Surfaces marked as dirty may be * cleared externally. */ public boolean isDirty() { return dirty; } /** * Creates a new surface and add a SoftReference to it. */ protected void newSurface(int width, int height) { buffer = new short[width * height]; bufferReference = new SoftReference(buffer); } /** * Clears this surface, allowing the garbage collector to remove it from * memory if needed. */ public void clearSurface() { buffer = null; } /** * Checks if the surface has been cleared. */ public boolean isCleared() { return (buffer == null); } /** * If the buffer has been previously built and cleared but not yet removed * from memory by the garbage collector, then this method attempts to * retrieve it. Returns true if successfull. */ public boolean retrieveSurface() { if (buffer == null) { buffer = (short[]) bufferReference.get(); } return !(buffer == null); } /** * Sets the source texture for this ShadedSurface. */ public void setTexture(ShadedTexture texture) { this.sourceTexture = texture; sourceTextureBounds.setWidth(texture.getWidth()); sourceTextureBounds.setHeight(texture.getHeight()); } /** * Sets the source texture and source bounds for this ShadedSurface. */ public void setTexture(ShadedTexture texture, Rectangle3D bounds) { setTexture(texture); sourceTextureBounds.setTo(bounds); } /** * Sets the surface bounds for this ShadedSurface. */ public void setSurfaceBounds(Rectangle3D surfaceBounds) { this.surfaceBounds = surfaceBounds; } /** * Gets the surface bounds for this ShadedSurface. */ public Rectangle3D getSurfaceBounds() { return surfaceBounds; } /** * Builds the surface. First, this method calls retrieveSurface() to see if * the surface needs to be rebuilt. If not, the surface is built by tiling * the source texture and apply the shade map. */ public void buildSurface() { if (retrieveSurface()) { return; } int width = (int) surfaceBounds.getWidth(); int height = (int) surfaceBounds.getHeight(); // create a new surface (buffer) newSurface(width, height); // builds the surface. // assume surface bounds and texture bounds are aligned // (possibly with different origins) Vector3D origin = sourceTextureBounds.getOrigin(); Vector3D directionU = sourceTextureBounds.getDirectionU(); Vector3D directionV = sourceTextureBounds.getDirectionV(); Vector3D d = new Vector3D(surfaceBounds.getOrigin()); d.subtract(origin); int startU = (int) ((d.getDotProduct(directionU) - SURFACE_BORDER_SIZE)); int startV = (int) ((d.getDotProduct(directionV) - SURFACE_BORDER_SIZE)); int offset = 0; int shadeMapOffsetU = SHADE_RES - SURFACE_BORDER_SIZE - startU; int shadeMapOffsetV = SHADE_RES - SURFACE_BORDER_SIZE - startV; for (int v = startV; v < startV + height; v++) { sourceTexture.setCurrRow(v); int u = startU; int amount = SURFACE_BORDER_SIZE; while (u < startU + width) { getInterpolatedShade(u + shadeMapOffsetU, v + shadeMapOffsetV); // keep drawing until we need to recalculate // the interpolated shade. (every SHADE_RES pixels) int endU = Math.min(startU + width, u + amount); while (u < endU) { buffer[offset++] = sourceTexture.getColorCurrRow(u, shadeValue >> SHADE_RES_SQ_BITS); shadeValue += shadeValueInc; u++; } amount = SHADE_RES; } } // if the surface bounds is not aligned with the texture // bounds, use this (slower) code. /* * Vector3D origin = sourceTextureBounds.getOrigin(); Vector3D * directionU = sourceTextureBounds.getDirectionU(); Vector3D directionV = * sourceTextureBounds.getDirectionV(); * * Vector3D d = new Vector3D(surfaceBounds.getOrigin()); * d.subtract(origin); int initTextureU = (int)(SCALE * * (d.getDotProduct(directionU) - SURFACE_BORDER_SIZE)); int * initTextureV = (int)(SCALE * (d.getDotProduct(directionV) - * SURFACE_BORDER_SIZE)); int textureDu1 = (int)(SCALE * * directionU.getDotProduct( surfaceBounds.getDirectionV())); int * textureDv1 = (int)(SCALE * directionV.getDotProduct( * surfaceBounds.getDirectionV())); int textureDu2 = (int)(SCALE * * directionU.getDotProduct( surfaceBounds.getDirectionU())); int * textureDv2 = (int)(SCALE * directionV.getDotProduct( * surfaceBounds.getDirectionU())); * * int shadeMapOffset = SHADE_RES - SURFACE_BORDER_SIZE; * * for (int v=0; v
* Note that use of the Robot class may not be available on all platforms. */ private synchronized void recenterMouse() { if (robot != null && comp.isShowing()) { centerLocation.x = comp.getWidth() / 2; centerLocation.y = comp.getHeight() / 2; SwingUtilities.convertPointToScreen(centerLocation, comp); isRecentering = true; robot.mouseMove(centerLocation.x, centerLocation.y); } } private GameAction getKeyAction(KeyEvent e) { int keyCode = e.getKeyCode(); if (keyCode < keyActions.length) { return keyActions[keyCode]; } else { return null; } } /** * Gets the mouse code for the button specified in this MouseEvent. */ public static int getMouseButtonCode(MouseEvent e) { switch (e.getButton()) { case MouseEvent.BUTTON1: return MOUSE_BUTTON_1; case MouseEvent.BUTTON2: return MOUSE_BUTTON_2; case MouseEvent.BUTTON3: return MOUSE_BUTTON_3; default: return -1; } } private GameAction getMouseButtonAction(MouseEvent e) { int mouseCode = getMouseButtonCode(e); if (mouseCode != -1) { return mouseActions[mouseCode]; } else { return null; } } // from the KeyListener interface public void keyPressed(KeyEvent e) { GameAction gameAction = getKeyAction(e); if (gameAction != null) { gameAction.press(); } // make sure the key isn't processed for anything else e.consume(); } // from the KeyListener interface public void keyReleased(KeyEvent e) { GameAction gameAction = getKeyAction(e); if (gameAction != null) { gameAction.release(); } // make sure the key isn't processed for anything else e.consume(); } // from the KeyListener interface public void keyTyped(KeyEvent e) { // make sure the key isn't processed for anything else e.consume(); } // from the MouseListener interface public void mousePressed(MouseEvent e) { GameAction gameAction = getMouseButtonAction(e); if (gameAction != null) { gameAction.press(); } } // from the MouseListener interface public void mouseReleased(MouseEvent e) { GameAction gameAction = getMouseButtonAction(e); if (gameAction != null) { gameAction.release(); } } // from the MouseListener interface public void mouseClicked(MouseEvent e) { // do nothing } // from the MouseListener interface public void mouseEntered(MouseEvent e) { mouseMoved(e); } // from the MouseListener interface public void mouseExited(MouseEvent e) { mouseMoved(e); } // from the MouseMotionListener interface public void mouseDragged(MouseEvent e) { mouseMoved(e); } // from the MouseMotionListener interface public synchronized void mouseMoved(MouseEvent e) { // this event is from re-centering the mouse - ignore it if (isRecentering && centerLocation.x == e.getX() && centerLocation.y == e.getY()) { isRecentering = false; } else { int dx = e.getX() - mouseLocation.x; int dy = e.getY() - mouseLocation.y; mouseHelper(MOUSE_MOVE_LEFT, MOUSE_MOVE_RIGHT, dx); mouseHelper(MOUSE_MOVE_UP, MOUSE_MOVE_DOWN, dy); if (isRelativeMouseMode()) { recenterMouse(); } } mouseLocation.x = e.getX(); mouseLocation.y = e.getY(); } // from the MouseWheelListener interface public void mouseWheelMoved(MouseWheelEvent e) { mouseHelper(MOUSE_WHEEL_UP, MOUSE_WHEEL_DOWN, e.getWheelRotation()); } private void mouseHelper(int codeNeg, int codePos, int amount) { GameAction gameAction; if (amount < 0) { gameAction = mouseActions[codeNeg]; } else { gameAction = mouseActions[codePos]; } if (gameAction != null) { gameAction.press(Math.abs(amount)); gameAction.release(); } } } /** * Simple abstract class used for testing. Subclasses should implement the * draw() method. */ abstract class GameCore { protected static final int DEFAULT_FONT_SIZE = 24; // various lists of modes, ordered by preference protected static final DisplayMode[] MID_RES_MODES = { new DisplayMode(800, 600, 16, 0), new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(640, 480, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(1024, 768, 16, 0), new DisplayMode(1024, 768, 32, 0), new DisplayMode(1024, 768, 24, 0), }; protected static final DisplayMode[] LOW_RES_MODES = { new DisplayMode(640, 480, 16, 0), new DisplayMode(640, 480, 32, 0), new DisplayMode(640, 480, 24, 0), new DisplayMode(800, 600, 16, 0), new DisplayMode(800, 600, 32, 0), new DisplayMode(800, 600, 24, 0), new DisplayMode(1024, 768, 16, 0), new DisplayMode(1024, 768, 32, 0), new DisplayMode(1024, 768, 24, 0), }; protected static final DisplayMode[] VERY_LOW_RES_MODES = { new DisplayMode(320, 240, 16, 0), new DisplayMode(400, 300, 16, 0), new DisplayMode(512, 384, 16, 0), new DisplayMode(640, 480, 16, 0), new DisplayMode(800, 600, 16, 0), }; private boolean isRunning; protected ScreenManager screen; protected int fontSize = DEFAULT_FONT_SIZE; /** * Signals the game loop that it's time to quit */ public void stop() { isRunning = false; } /** * Calls init() and gameLoop() */ public void run() { try { init(); gameLoop(); } finally { if (screen != null) { screen.restoreScreen(); } lazilyExit(); } } /** * Exits the VM from a daemon thread. The daemon thread waits 2 seconds then * calls System.exit(0). Since the VM should exit when only daemon threads * are running, this makes sure System.exit(0) is only called if neccesary. * It's neccesary if the Java Sound system is running. */ public void lazilyExit() { Thread thread = new Thread() { public void run() { // first, wait for the VM exit on its own. try { Thread.sleep(2000); } catch (InterruptedException ex) { } // system is still running, so force an exit System.exit(0); } }; thread.setDaemon(true); thread.start(); } /** * Sets full screen mode and initiates and objects. */ public void init() { init(MID_RES_MODES); } /** * Sets full screen mode and initiates and objects. */ public void init(DisplayMode[] possibleModes) { screen = new ScreenManager(); DisplayMode displayMode = screen.findFirstCompatibleMode(possibleModes); screen.setFullScreen(displayMode); Window window = screen.getFullScreenWindow(); window.setFont(new Font("Dialog", Font.PLAIN, fontSize)); window.setBackground(Color.blue); window.setForeground(Color.white); isRunning = true; } public Image loadImage(String fileName) { return new ImageIcon(fileName).getImage(); } /** * Runs through the game loop until stop() is called. */ public void gameLoop() { long startTime = System.currentTimeMillis(); long currTime = startTime; while (isRunning) { long elapsedTime = System.currentTimeMillis() - currTime; currTime += elapsedTime; // update update(elapsedTime); // draw the screen Graphics2D g = screen.getGraphics(); draw(g); g.dispose(); screen.update(); // don't take a nap! run as fast as possible /* * try { Thread.sleep(20); } catch (InterruptedException ex) { } */ } } /** * Updates the state of the game/animation based on the amount of elapsed * time that has passed. */ public void update(long elapsedTime) { // do nothing } /** * Draws to the screen. Subclasses must override this method. */ public abstract void draw(Graphics2D g); } /** * The GameObjectManager interface provides methods to keep track of and draw * GameObjects. */ interface GameObjectManager { /** * Marks all objects within the specified 2D bounds as potentially visible * (should be drawn). */ public void markVisible(Rectangle bounds); /** * Marks all objects as potentially visible (should be drawn). */ public void markAllVisible(); /** * Adds a GameObject to this manager. */ public void add(GameObject object); /** * Adds a GameObject to this manager, specifying it as the player object. An * existing player object, if any, is not removed. */ public void addPlayer(GameObject player); /** * Gets the object specified as the Player object, or null if no player * object was specified. */ public GameObject getPlayer(); /** * Removes a GameObject from this manager. */ public void remove(GameObject object); /** * Updates all objects based on the amount of time passed from the last * update. */ public void update(long elapsedTime); /** * Draws all visible objects. */ public void draw(Graphics2D g, GameObjectRenderer r); } /** * The GameObjectRenderer interface provides a method for drawing a GameObject. */ interface GameObjectRenderer { /** * Draws the object and returns true if any part of the object is visible. */ public boolean draw(Graphics2D g, GameObject object); } /** * The Blast GameObject is a projectile, designed to travel in a straight line * for five seconds, then die. Blasts destroy Bots instantly. */ class Blast extends GameObject { private static final long DIE_TIME = 5000; private static final float SPEED = 1.5f; private static final float ROT_SPEED = .008f; private long aliveTime; /** * Create a new Blast with the specified PolygonGroup and normalized vector * direction. */ public Blast(PolygonGroup polygonGroup, Vector3D direction) { super(polygonGroup); MovingTransform3D transform = polygonGroup.getTransform(); Vector3D velocity = transform.getVelocity(); velocity.setTo(direction); velocity.multiply(SPEED); transform.setVelocity(velocity); //transform.setAngleVelocityX(ROT_SPEED); transform.setAngleVelocityY(ROT_SPEED); transform.setAngleVelocityZ(ROT_SPEED); setState(STATE_ACTIVE); } public void update(GameObject player, long elapsedTime) { aliveTime += elapsedTime; if (aliveTime >= DIE_TIME) { setState(STATE_DESTROYED); } else { super.update(player, elapsedTime); } } } abstract class ShooterCore extends GameCore3D { private static final float PLAYER_SPEED = .5f; private static final float PLAYER_TURN_SPEED = 0.04f; private static final float CAMERA_HEIGHT = 100; private static final float BULLET_HEIGHT = 75; protected GameAction fire = new GameAction("fire", GameAction.DETECT_INITAL_PRESS_ONLY); protected GameObjectManager gameObjectManager; protected PolygonGroup blastModel; protected DisplayMode[] modes; public ShooterCore(String[] args) { modes = LOW_RES_MODES; for (int i = 0; i < args.length; i++) { if (args[i].equals("-lowres")) { modes = VERY_LOW_RES_MODES; fontSize = 12; } } } public void init() { init(modes); inputManager.mapToKey(fire, KeyEvent.VK_SPACE); inputManager.mapToMouse(fire, InputManager.MOUSE_BUTTON_1); // set up the local lights for the model. float ambientLightIntensity = .8f; List lights = new LinkedList(); lights.add(new PointLight3D(-100, 100, 100, .5f, -1)); lights.add(new PointLight3D(100, 100, 0, .5f, -1)); // load the object model ObjectLoader loader = new ObjectLoader(); loader.setLights(lights, ambientLightIntensity); try { blastModel = loader.loadObject("../images/blast.obj"); } catch (IOException ex) { ex.printStackTrace(); } } public void createPolygonRenderer() { // make the view window the entire screen viewWindow = new ViewWindow(0, 0, screen.getWidth(), screen.getHeight(), (float) Math.toRadians(75)); Transform3D camera = new Transform3D(); polygonRenderer = new BSPRenderer(camera, viewWindow); } public void updateWorld(long elapsedTime) { float angleVelocity; // cap elapsedTime elapsedTime = Math.min(elapsedTime, 100); GameObject player = gameObjectManager.getPlayer(); MovingTransform3D playerTransform = player.getTransform(); Vector3D velocity = playerTransform.getVelocity(); //playerTransform.stop(); velocity.x = 0; velocity.z = 0; float x = -playerTransform.getSinAngleY(); float z = -playerTransform.getCosAngleY(); if (goForward.isPressed()) { velocity.add(x * PLAYER_SPEED, 0, z * PLAYER_SPEED); } if (goBackward.isPressed()) { velocity.add(-x * PLAYER_SPEED, 0, -z * PLAYER_SPEED); } if (goLeft.isPressed()) { velocity.add(z * PLAYER_SPEED, 0, -x * PLAYER_SPEED); } if (goRight.isPressed()) { velocity.add(-z * PLAYER_SPEED, 0, x * PLAYER_SPEED); } if (fire.isPressed()) { float cosX = playerTransform.getCosAngleX(); float sinX = playerTransform.getSinAngleX(); Blast blast = new Blast((PolygonGroup) blastModel.clone(), new Vector3D(cosX * x, sinX, cosX * z)); // blast starting location needs work. looks like // the blast is coming out of your forehead when // you're shooting down. blast.getLocation().setTo(player.getX(), player.getY() + BULLET_HEIGHT, player.getZ()); gameObjectManager.add(blast); } playerTransform.setVelocity(velocity); // look up/down (rotate around x) angleVelocity = Math.min(tiltUp.getAmount(), 200); angleVelocity += Math.max(-tiltDown.getAmount(), -200); playerTransform.setAngleVelocityX(angleVelocity * PLAYER_TURN_SPEED / 200); // turn (rotate around y) angleVelocity = Math.min(turnLeft.getAmount(), 200); angleVelocity += Math.max(-turnRight.getAmount(), -200); playerTransform.setAngleVelocityY(angleVelocity * PLAYER_TURN_SPEED / 200); // update objects gameObjectManager.update(elapsedTime); // limit look up/down float angleX = playerTransform.getAngleX(); float limit = (float) Math.PI / 2; if (angleX < -limit) { playerTransform.setAngleX(-limit); } else if (angleX > limit) { playerTransform.setAngleX(limit); } // set the camera to be 100 units above the player Transform3D camera = polygonRenderer.getCamera(); camera.setTo(playerTransform); camera.getLocation().add(0, CAMERA_HEIGHT, 0); } } /** * The Texture class is an sabstract class that represents a 16-bit color * texture. */ abstract class Texture { protected int width; protected int height; /** * Creates a new Texture with the specified width and height. */ public Texture(int width, int height) { this.width = width; this.height = height; } /** * Gets the width of this Texture. */ public int getWidth() { return width; } /** * Gets the height of this Texture. */ public int getHeight() { return height; } /** * Gets the 16-bit color of this Texture at the specified (x,y) location. */ public abstract short getColor(int x, int y); /** * Creates an unshaded Texture from the specified image file. */ public static Texture createTexture(String filename) { return createTexture(filename, false); } /** * Creates an Texture from the specified image file. If shaded is true, then * a ShadedTexture is returned. */ public static Texture createTexture(String filename, boolean shaded) { try { return createTexture(ImageIO.read(new File(filename)), shaded); } catch (IOException ex) { ex.printStackTrace(); return null; } } /** * Creates an unshaded Texture from the specified image. */ public static Texture createTexture(BufferedImage image) { return createTexture(image, false); } /** * Creates an Texture from the specified image. If shaded is true, then a * ShadedTexture is returned. */ public static Texture createTexture(BufferedImage image, boolean shaded) { int type = image.getType(); int width = image.getWidth(); int height = image.getHeight(); if (!isPowerOfTwo(width) || !isPowerOfTwo(height)) { throw new IllegalArgumentException( "Size of texture must be a power of two."); } if (shaded) { // convert image to an indexed image if (type != BufferedImage.TYPE_BYTE_INDEXED) { System.out.println("Warning: image converted to " + "256-color indexed image. Some quality may " + "be lost."); BufferedImage newImage = new BufferedImage(image.getWidth(), image.getHeight(), BufferedImage.TYPE_BYTE_INDEXED); Graphics2D g = newImage.createGraphics(); g.drawImage(image, 0, 0, null); g.dispose(); image = newImage; } DataBuffer dest = image.getRaster().getDataBuffer(); return new ShadedTexture(((DataBufferByte) dest).getData(), countbits(width - 1), countbits(height - 1), (IndexColorModel) image.getColorModel()); } else { // convert image to an 16-bit image if (type != BufferedImage.TYPE_USHORT_565_RGB) { BufferedImage newImage = new BufferedImage(image.getWidth(), image.getHeight(), BufferedImage.TYPE_USHORT_565_RGB); Graphics2D g = newImage.createGraphics(); g.drawImage(image, 0, 0, null); g.dispose(); image = newImage; } DataBuffer dest = image.getRaster().getDataBuffer(); return new PowerOf2Texture(((DataBufferUShort) dest).getData(), countbits(width - 1), countbits(height - 1)); } } /** * Returns true if the specified number is a power of 2. */ public static boolean isPowerOfTwo(int n) { return ((n & (n - 1)) == 0); } /** * Counts the number of "on" bits in an integer. */ public static int countbits(int n) { int count = 0; while (n > 0) { count += (n & 1); n >>= 1; } return count; } } /** * The GameAction class is an abstract to a user-initiated action, like jumping * or moving. GameActions can be mapped to keys or the mouse with the * InputManager. */ class GameAction { /** * Normal behavior. The isPressed() method returns true as long as the key * is held down. */ public static final int NORMAL = 0; /** * Initial press behavior. The isPressed() method returns true only after * the key is first pressed, and not again until the key is released and * pressed again. */ public static final int DETECT_INITAL_PRESS_ONLY = 1; private static final int STATE_RELEASED = 0; private static final int STATE_PRESSED = 1; private static final int STATE_WAITING_FOR_RELEASE = 2; private String name; private int behavior; private int amount; private int state; /** * Create a new GameAction with the NORMAL behavior. */ public GameAction(String name) { this(name, NORMAL); } /** * Create a new GameAction with the specified behavior. */ public GameAction(String name, int behavior) { this.name = name; this.behavior = behavior; reset(); } /** * Gets the name of this GameAction. */ public String getName() { return name; } /** * Resets this GameAction so that it appears like it hasn't been pressed. */ public void reset() { state = STATE_RELEASED; amount = 0; } /** * Taps this GameAction. Same as calling press() followed by release(). */ public synchronized void tap() { press(); release(); } /** * Signals that the key was pressed. */ public synchronized void press() { press(1); } /** * Signals that the key was pressed a specified number of times, or that the * mouse move a spcified distance. */ public synchronized void press(int amount) { if (state != STATE_WAITING_FOR_RELEASE) { this.amount += amount; state = STATE_PRESSED; } } /** * Signals that the key was released */ public synchronized void release() { state = STATE_RELEASED; } /** * Returns whether the key was pressed or not since last checked. */ public synchronized boolean isPressed() { return (getAmount() != 0); } /** * For keys, this is the number of times the key was pressed since it was * last checked. For mouse movement, this is the distance moved. */ public synchronized int getAmount() { int retVal = amount; if (retVal != 0) { if (state == STATE_RELEASED) { amount = 0; } else if (behavior == DETECT_INITAL_PRESS_ONLY) { state = STATE_WAITING_FOR_RELEASE; amount = 0; } } return retVal; } } /** * A PointLight3D is a point light that has an intensity (between 0 and 1) and * optionally a distance falloff value, which causes the light to diminish with * distance. */ class PointLight3D extends Vector3D { public static final float NO_DISTANCE_FALLOFF = -1; private float intensity; private float distanceFalloff; /** * Creates a new PointLight3D at (0,0,0) with an intensity of 1 and no * distance falloff. */ public PointLight3D() { this(0, 0, 0, 1, NO_DISTANCE_FALLOFF); } /** * Creates a copy of the specified PointLight3D. */ public PointLight3D(PointLight3D p) { setTo(p); } /** * Creates a new PointLight3D with the specified location and intensity. The * created light has no distance falloff. */ public PointLight3D(float x, float y, float z, float intensity) { this(x, y, z, intensity, NO_DISTANCE_FALLOFF); } /** * Creates a new PointLight3D with the specified location. intensity, and no * distance falloff. */ public PointLight3D(float x, float y, float z, float intensity, float distanceFalloff) { setTo(x, y, z); setIntensity(intensity); setDistanceFalloff(distanceFalloff); } /** * Sets this PointLight3D to the same location, intensity, and distance * falloff as the specified PointLight3D. */ public void setTo(PointLight3D p) { setTo(p.x, p.y, p.z); setIntensity(p.getIntensity()); setDistanceFalloff(p.getDistanceFalloff()); } /** * Gets the intensity of this light from the specified distance. */ public float getIntensity(float distance) { if (distanceFalloff == NO_DISTANCE_FALLOFF) { return intensity; } else if (distance >= distanceFalloff) { return 0; } else { return intensity * (distanceFalloff - distance) / (distanceFalloff + distance); } } /** * Gets the intensity of this light. */ public float getIntensity() { return intensity; } /** * Sets the intensity of this light. */ public void setIntensity(float intensity) { this.intensity = intensity; } /** * Gets the distances falloff value. The light intensity is zero beyond this * distance. */ public float getDistanceFalloff() { return distanceFalloff; } /** * Sets the distances falloff value. The light intensity is zero beyond this * distance. Set to NO_DISTANCE_FALLOFF if the light does not diminish with * distance. */ public void setDistanceFalloff(float distanceFalloff) { this.distanceFalloff = distanceFalloff; } } /** * The SimpleGameObjectManager is a GameObjectManager that keeps all object in a * list and performs no collision detection. */ class SimpleGameObjectManager implements GameObjectManager { private List allObjects; private List visibleObjects; private GameObject player; /** * Creates a new SimpleGameObjectManager. */ public SimpleGameObjectManager() { allObjects = new ArrayList(); visibleObjects = new ArrayList(); player = null; } /** * Marks all objects as potentially visible (should be drawn). */ public void markAllVisible() { for (int i = 0; i < allObjects.size(); i++) { GameObject object = (GameObject) allObjects.get(i); if (!visibleObjects.contains(object)) { visibleObjects.add(object); } } } /** * Marks all objects within the specified 2D bounds as potentially visible * (should be drawn). */ public void markVisible(Rectangle bounds) { for (int i = 0; i < allObjects.size(); i++) { GameObject object = (GameObject) allObjects.get(i); if (bounds.contains(object.getX(), object.getZ()) && !visibleObjects.contains(object)) { visibleObjects.add(object); } } } /** * Adds a GameObject to this manager. */ public void add(GameObject object) { if (object != null) { allObjects.add(object); } } /** * Adds a GameObject to this manager, specifying it as the player object. An * existing player object, if any, is not removed. */ public void addPlayer(GameObject player) { this.player = player; if (player != null) { player.notifyVisible(true); allObjects.add(0, player); } } /** * Gets the object specified as the Player object, or null if no player * object was specified. */ public GameObject getPlayer() { return player; } /** * Removes a GameObject from this manager. */ public void remove(GameObject object) { allObjects.remove(object); visibleObjects.remove(object); } /** * Updates all objects based on the amount of time passed from the last * update. */ public void update(long elapsedTime) { for (int i = 0; i < allObjects.size(); i++) { GameObject object = (GameObject) allObjects.get(i); object.update(player, elapsedTime); // remove destroyed objects if (object.isDestroyed()) { allObjects.remove(i); visibleObjects.remove(object); i--; } } } /** * Draws all visible objects and marks all objects as not visible. */ public void draw(Graphics2D g, GameObjectRenderer r) { Iterator i = visibleObjects.iterator(); while (i.hasNext()) { GameObject object = (GameObject) i.next(); boolean visible = r.draw(g, object); // notify objects if they are visible this frame object.notifyVisible(visible); } visibleObjects.clear(); } } /** * A GameObject class is a base class for any type of object in a game that is * represented by a PolygonGroup. For example, a GameObject can be a static * object (like a crate), a moving object (like a projectile or a bad guy), or * any other type of object (like a power-ups). GameObjects have three basic * states: STATE_IDLE, STATE_ACTIVE, or STATE_DESTROYED. */ class GameObject { /** * Represents a GameObject that is idle. If the object is idle, it's * Transform3D is not updated. By default, GameObjects are initially idle * and are changed to the active state when they are initially visible. This * behavior can be changed by overriding the notifyVisible() method. */ protected static final int STATE_IDLE = 0; /** * Represents a GameObject that is active. should no longer be updated or * drawn. Once in the STATE_DESTROYED state, the GameObjectManager should * remove this object from the list of GameObject it manages. */ protected static final int STATE_ACTIVE = 1; /** * Represents a GameObject that has been destroyed, and should no longer be * updated or drawn. Once in the STATE_DESTROYED state, the * GameObjectManager should remove this object from the list of GameObject * it manages. */ protected static final int STATE_DESTROYED = 2; private PolygonGroup polygonGroup; private int state; /** * Creates a new GameObject represented by the specified PolygonGroup. The * PolygonGroup can be null. */ public GameObject(PolygonGroup polygonGroup) { this.polygonGroup = polygonGroup; state = STATE_IDLE; } /** * Shortcut to get the location of this GameObject from the Transform3D. */ public Vector3D getLocation() { return polygonGroup.getTransform().getLocation(); } /** * Gets this object's transform. */ public MovingTransform3D getTransform() { return polygonGroup.getTransform(); } /** * Gets this object's PolygonGroup. */ public PolygonGroup getPolygonGroup() { return polygonGroup; } /** * Shortcut to get the X location of this GameObject. */ public float getX() { return getLocation().x; } /** * Shortcut to get the Y location of this GameObject. */ public float getY() { return getLocation().y; } /** * Shortcut to get the Z location of this GameObject. */ public float getZ() { return getLocation().z; } /** * Sets the state of this object. Should be either STATE_IDLE, STATE_ACTIVE, * or STATE_DESTROYED. */ protected void setState(int state) { this.state = state; } /** * Sets the state of the specified object. This allows any GameObject to set * the state of any other GameObject. The state should be either STATE_IDLE, * STATE_ACTIVE, or STATE_DESTROYED. */ protected void setState(GameObject object, int state) { object.setState(state); } /** * Returns true if this GameObject is idle. */ public boolean isIdle() { return (state == STATE_IDLE); } /** * Returns true if this GameObject is active. */ public boolean isActive() { return (state == STATE_ACTIVE); } /** * Returns true if this GameObject is destroyed. */ public boolean isDestroyed() { return (state == STATE_DESTROYED); } /** * If this GameObject is in the active state, this method updates it's * PolygonGroup. Otherwise, this method does nothing. */ public void update(GameObject player, long elapsedTime) { if (isActive()) { polygonGroup.update(elapsedTime); } } /** * Notifies this GameObject whether it was visible or not on the last * update. By default, if this GameObject is idle and notified as visible, * it changes to the active state. */ public void notifyVisible(boolean visible) { if (visible && isIdle()) { state = STATE_ACTIVE; } } } /** * The Vector3D class implements a 3D vector with the floating-point values x, * y, and z. Vectors can be thought of either as a (x,y,z) point or as a vector * from (0,0,0) to (x,y,z). */ class Vector3D implements Transformable { public float x; public float y; public float z; /** * Creates a new Vector3D at (0,0,0). */ public Vector3D() { this(0, 0, 0); } /** * Creates a new Vector3D with the same values as the specified Vector3D. */ public Vector3D(Vector3D v) { this(v.x, v.y, v.z); } /** * Creates a new Vector3D with the specified (x, y, z) values. */ public Vector3D(float x, float y, float z) { setTo(x, y, z); } /** * Checks if this Vector3D is equal to the specified Object. They are equal * only if the specified Object is a Vector3D and the two Vector3D's x, y, * and z coordinates are equal. */ public boolean equals(Object obj) { Vector3D v = (Vector3D) obj; return (v.x == x && v.y == y && v.z == z); } /** * Checks if this Vector3D is equal to the specified x, y, and z * coordinates. */ public boolean equals(float x, float y, float z) { return (this.x == x && this.y == y && this.z == z); } /** * Sets the vector to the same values as the specified Vector3D. */ public void setTo(Vector3D v) { setTo(v.x, v.y, v.z); } /** * Sets this vector to the specified (x, y, z) values. */ public void setTo(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } /** * Adds the specified (x, y, z) values to this vector. */ public void add(float x, float y, float z) { this.x += x; this.y += y; this.z += z; } /** * Subtracts the specified (x, y, z) values to this vector. */ public void subtract(float x, float y, float z) { add(-x, -y, -z); } /** * Adds the specified vector to this vector. */ public void add(Vector3D v) { add(v.x, v.y, v.z); } /** * Subtracts the specified vector from this vector. */ public void subtract(Vector3D v) { add(-v.x, -v.y, -v.z); } /** * Multiplies this vector by the specified value. The new length of this * vector will be length()*s. */ public void multiply(float s) { x *= s; y *= s; z *= s; } /** * Divides this vector by the specified value. The new length of this vector * will be length()/s. */ public void divide(float s) { x /= s; y /= s; z /= s; } /** * Returns the length of this vector as a float. */ public float length() { return (float) Math.sqrt(x * x + y * y + z * z); } /** * Converts this Vector3D to a unit vector, or in other words, a vector of * length 1. Same as calling v.divide(v.length()). */ public void normalize() { divide(length()); } /** * Converts this Vector3D to a String representation. */ public String toString() { return "(" + x + ", " + y + ", " + z + ")"; } /** * Rotate this vector around the x axis the specified amount. The specified * angle is in radians. Use Math.toRadians() to convert from degrees to * radians. */ public void rotateX(float angle) { rotateX((float) Math.cos(angle), (float) Math.sin(angle)); } /** * Rotate this vector around the y axis the specified amount. The specified * angle is in radians. Use Math.toRadians() to convert from degrees to * radians. */ public void rotateY(float angle) { rotateY((float) Math.cos(angle), (float) Math.sin(angle)); } /** * Rotate this vector around the z axis the specified amount. The specified * angle is in radians. Use Math.toRadians() to convert from degrees to * radians. */ public void rotateZ(float angle) { rotateZ((float) Math.cos(angle), (float) Math.sin(angle)); } /** * Rotate this vector around the x axis the specified amount, using * pre-computed cosine and sine values of the angle to rotate. */ public void rotateX(float cosAngle, float sinAngle) { float newY = y * cosAngle - z * sinAngle; float newZ = y * sinAngle + z * cosAngle; y = newY; z = newZ; } /** * Rotate this vector around the y axis the specified amount, using * pre-computed cosine and sine values of the angle to rotate. */ public void rotateY(float cosAngle, float sinAngle) { float newX = z * sinAngle + x * cosAngle; float newZ = z * cosAngle - x * sinAngle; x = newX; z = newZ; } /** * Rotate this vector around the y axis the specified amount, using * pre-computed cosine and sine values of the angle to rotate. */ public void rotateZ(float cosAngle, float sinAngle) { float newX = x * cosAngle - y * sinAngle; float newY = x * sinAngle + y * cosAngle; x = newX; y = newY; } /** * Adds the specified transform to this vector. This vector is first * rotated, then translated. */ public void add(Transform3D xform) { // rotate addRotation(xform); // translate add(xform.getLocation()); } /** * Subtracts the specified transform to this vector. This vector translated, * then rotated. */ public void subtract(Transform3D xform) { // translate subtract(xform.getLocation()); // rotate subtractRotation(xform); } /** * Rotates this vector with the angle of the specified transform. */ public void addRotation(Transform3D xform) { rotateX(xform.getCosAngleX(), xform.getSinAngleX()); rotateZ(xform.getCosAngleZ(), xform.getSinAngleZ()); rotateY(xform.getCosAngleY(), xform.getSinAngleY()); } /** * Rotates this vector with the opposite angle of the specified transform. */ public void subtractRotation(Transform3D xform) { // note that sin(-x) == -sin(x) and cos(-x) == cos(x) rotateY(xform.getCosAngleY(), -xform.getSinAngleY()); rotateZ(xform.getCosAngleZ(), -xform.getSinAngleZ()); rotateX(xform.getCosAngleX(), -xform.getSinAngleX()); } /** * Returns the dot product of this vector and the specified vector. */ public float getDotProduct(Vector3D v) { return x * v.x + y * v.y + z * v.z; } /** * Sets this vector to the cross product of the two specified vectors. * Either of the specified vectors can be this vector. */ public void setToCrossProduct(Vector3D u, Vector3D v) { // assign to local vars first in case u or v is 'this' float x = u.y * v.z - u.z * v.y; float y = u.z * v.x - u.x * v.z; float z = u.x * v.y - u.y * v.x; this.x = x; this.y = y; this.z = z; } } /** * The ScreenManager class manages initializing and displaying full screen * graphics modes. */ class ScreenManager { private GraphicsDevice device; /** * Creates a new ScreenManager object. */ public ScreenManager() { GraphicsEnvironment environment = GraphicsEnvironment .getLocalGraphicsEnvironment(); device = environment.getDefaultScreenDevice(); } /** * Returns a list of compatible display modes for the default device on the * system. */ public DisplayMode[] getCompatibleDisplayModes() { return device.getDisplayModes(); } /** * Returns the first compatible mode in a list of modes. Returns null if no * modes are compatible. */ public DisplayMode findFirstCompatibleMode(DisplayMode modes[]) { DisplayMode goodModes[] = device.getDisplayModes(); for (int i = 0; i < modes.length; i++) { for (int j = 0; j < goodModes.length; j++) { if (displayModesMatch(modes[i], goodModes[j])) { return modes[i]; } } } return null; } /** * Returns the current display mode. */ public DisplayMode getCurrentDisplayMode() { return device.getDisplayMode(); } /** * Determines if two display modes "match". Two display modes match if they * have the same resolution, bit depth, and refresh rate. The bit depth is * ignored if one of the modes has a bit depth of * DisplayMode.BIT_DEPTH_MULTI. Likewise, the refresh rate is ignored if one * of the modes has a refresh rate of DisplayMode.REFRESH_RATE_UNKNOWN. */ public boolean displayModesMatch(DisplayMode mode1, DisplayMode mode2) { if (mode1.getWidth() != mode2.getWidth() || mode1.getHeight() != mode2.getHeight()) { return false; } if (mode1.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode2.getBitDepth() != DisplayMode.BIT_DEPTH_MULTI && mode1.getBitDepth() != mode2.getBitDepth()) { return false; } if (mode1.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode2.getRefreshRate() != DisplayMode.REFRESH_RATE_UNKNOWN && mode1.getRefreshRate() != mode2.getRefreshRate()) { return false; } return true; } /** * Enters full screen mode and changes the display mode. If the specified * display mode is null or not compatible with this device, or if the * display mode cannot be changed on this system, the current display mode * is used. *
* The display uses a BufferStrategy with 2 buffers. */ public void setFullScreen(DisplayMode displayMode) { final JFrame frame = new JFrame(); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setUndecorated(true); frame.setIgnoreRepaint(true); frame.setResizable(false); device.setFullScreenWindow(frame); if (displayMode != null && device.isDisplayChangeSupported()) { try { device.setDisplayMode(displayMode); } catch (IllegalArgumentException ex) { } // fix for mac os x frame.setSize(displayMode.getWidth(), displayMode.getHeight()); } // avoid potential deadlock in 1.4.1_02 try { EventQueue.invokeAndWait(new Runnable() { public void run() { frame.createBufferStrategy(2); } }); } catch (InterruptedException ex) { // ignore } catch (InvocationTargetException ex) { // ignore } } /** * Gets the graphics context for the display. The ScreenManager uses double * buffering, so applications must call update() to show any graphics drawn. *
* The application must dispose of the graphics object. */ public Graphics2D getGraphics() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); return (Graphics2D) strategy.getDrawGraphics(); } else { return null; } } /** * Updates the display. */ public void update() { Window window = device.getFullScreenWindow(); if (window != null) { BufferStrategy strategy = window.getBufferStrategy(); if (!strategy.contentsLost()) { strategy.show(); } } // Sync the display on some systems. // (on Linux, this fixes event queue problems) //Toolkit.getDefaultToolkit().sync(); } /** * Returns the window currently used in full screen mode. Returns null if * the device is not in full screen mode. */ public JFrame getFullScreenWindow() { return (JFrame) device.getFullScreenWindow(); } /** * Returns the width of the window currently used in full screen mode. * Returns 0 if the device is not in full screen mode. */ public int getWidth() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getWidth(); } else { return 0; } } /** * Returns the height of the window currently used in full screen mode. * Returns 0 if the device is not in full screen mode. */ public int getHeight() { Window window = device.getFullScreenWindow(); if (window != null) { return window.getHeight(); } else { return 0; } } /** * Restores the screen's display mode. */ public void restoreScreen() { Window window = device.getFullScreenWindow(); if (window != null) { window.dispose(); } device.setFullScreenWindow(null); } /** * Creates an image compatible with the current display. */ public BufferedImage createCompatibleImage(int w, int h, int transparancy) { Window window = device.getFullScreenWindow(); if (window != null) { GraphicsConfiguration gc = window.getGraphicsConfiguration(); return gc.createCompatibleImage(w, h, transparancy); } return null; } } /** * The ShadedTexture class is a Texture that has multiple shades. The texture * source image is stored as a 8-bit image with a palette for every shade. */ final class ShadedTexture extends Texture { public static final int NUM_SHADE_LEVELS = 64; public static final int MAX_LEVEL = NUM_SHADE_LEVELS - 1; private static final int PALETTE_SIZE_BITS = 8; private static final int PALETTE_SIZE = 1 << PALETTE_SIZE_BITS; private byte[] buffer; private IndexColorModel palette; private short[] shadeTable; private int defaultShadeLevel; private int widthBits; private int widthMask; private int heightBits; private int heightMask; // the row set in setCurrRow and used in getColorCurrRow private int currRow; /** * Creates a new ShadedTexture from the specified 8-bit image buffer and * palette. The width of the bitmap is 2 to the power of widthBits, or (1 < < * widthBits). Likewise, the height of the bitmap is 2 to the power of * heightBits, or (1 < < heightBits). The texture is shaded from it's * original color to black. */ public ShadedTexture(byte[] buffer, int widthBits, int heightBits, IndexColorModel palette) { this(buffer, widthBits, heightBits, palette, Color.BLACK); } /** * Creates a new ShadedTexture from the specified 8-bit image buffer, * palette, and target shaded. The width of the bitmap is 2 to the power of * widthBits, or (1 < < widthBits). Likewise, the height of the bitmap is 2 * to the power of heightBits, or (1 < < heightBits). The texture is shaded * from it's original color to the target shade. */ public ShadedTexture(byte[] buffer, int widthBits, int heightBits, IndexColorModel palette, Color targetShade) { super(1 << widthBits, 1 << heightBits); this.buffer = buffer; this.widthBits = widthBits; this.heightBits = heightBits; this.widthMask = getWidth() - 1; this.heightMask = getHeight() - 1; this.buffer = buffer; this.palette = palette; defaultShadeLevel = MAX_LEVEL; makeShadeTable(targetShade); } /** * Creates the shade table for this ShadedTexture. Each entry in the palette * is shaded from the original color to the specified target color. */ public void makeShadeTable(Color targetShade) { shadeTable = new short[NUM_SHADE_LEVELS * PALETTE_SIZE]; for (int level = 0; level < NUM_SHADE_LEVELS; level++) { for (int i = 0; i < palette.getMapSize(); i++) { int red = calcColor(palette.getRed(i), targetShade.getRed(), level); int green = calcColor(palette.getGreen(i), targetShade .getGreen(), level); int blue = calcColor(palette.getBlue(i), targetShade.getBlue(), level); int index = level * PALETTE_SIZE + i; // RGB 5:6:5 shadeTable[index] = (short) (((red >> 3) << 11) | ((green >> 2) << 5) | (blue >> 3)); } } } private int calcColor(int palColor, int target, int level) { return (palColor - target) * (level + 1) / NUM_SHADE_LEVELS + target; } /** * Sets the default shade level that is used when getColor() is called. */ public void setDefaultShadeLevel(int level) { defaultShadeLevel = level; } /** * Gets the default shade level that is used when getColor() is called. */ public int getDefaultShadeLevel() { return defaultShadeLevel; } /** * Gets the 16-bit color of this Texture at the specified (x,y) location, * using the default shade level. */ public short getColor(int x, int y) { return getColor(x, y, defaultShadeLevel); } /** * Gets the 16-bit color of this Texture at the specified (x,y) location, * using the specified shade level. */ public short getColor(int x, int y, int shadeLevel) { return shadeTable[(shadeLevel << PALETTE_SIZE_BITS) | (0xff & buffer[(x & widthMask) | ((y & heightMask) << widthBits)])]; } /** * Sets the current row for getColorCurrRow(). Pre-calculates the offset for * this row. */ public void setCurrRow(int y) { currRow = (y & heightMask) << widthBits; } /** * Gets the color at the specified x location at the specified shade level. * The current row defined in setCurrRow is used. */ public short getColorCurrRow(int x, int shadeLevel) { return shadeTable[(shadeLevel << PALETTE_SIZE_BITS) | (0xff & buffer[(x & widthMask) | currRow])]; } } /** * The PowerOf2Texture class is a Texture with a width and height that are a * power of 2 (32, 128, etc.). */ final class PowerOf2Texture extends Texture { private short[] buffer; private int widthBits; private int widthMask; private int heightBits; private int heightMask; /** * Creates a new PowerOf2Texture with the specified buffer. The width of the * bitmap is 2 to the power of widthBits, or (1 < < widthBits). Likewise, * the height of the bitmap is 2 to the power of heightBits, or (1 < < * heightBits). */ public PowerOf2Texture(short[] buffer, int widthBits, int heightBits) { super(1 << widthBits, 1 << heightBits); this.buffer = buffer; this.widthBits = widthBits; this.heightBits = heightBits; this.widthMask = getWidth() - 1; this.heightMask = getHeight() - 1; } /** * Gets the 16-bit color of the pixel at location (x,y) in the bitmap. */ public short getColor(int x, int y) { return buffer[(x & widthMask) + ((y & heightMask) << widthBits)]; } } /** * The FastTexturedPolygonRenderer is a PolygonRenderer that efficiently renders * Textures. */ class FastTexturedPolygonRenderer extends PolygonRenderer { public static final int SCALE_BITS = 12; public static final int SCALE = 1 << SCALE_BITS; public static final int INTERP_SIZE_BITS = 4; public static final int INTERP_SIZE = 1 << INTERP_SIZE_BITS; protected Vector3D a = new Vector3D(); protected Vector3D b = new Vector3D(); protected Vector3D c = new Vector3D(); protected Vector3D viewPos = new Vector3D(); protected BufferedImage doubleBuffer; protected short[] doubleBufferData; protected HashMap scanRenderers; public FastTexturedPolygonRenderer(Transform3D camera, ViewWindow viewWindow) { this(camera, viewWindow, true); } public FastTexturedPolygonRenderer(Transform3D camera, ViewWindow viewWindow, boolean clearViewEveryFrame) { super(camera, viewWindow, clearViewEveryFrame); } protected void init() { destPolygon = new TexturedPolygon3D(); scanConverter = new ScanConverter(viewWindow); // create renders for each texture (HotSpot optimization) scanRenderers = new HashMap(); scanRenderers.put(PowerOf2Texture.class, new PowerOf2TextureRenderer()); scanRenderers.put(ShadedTexture.class, new ShadedTextureRenderer()); scanRenderers.put(ShadedSurface.class, new ShadedSurfaceRenderer()); } public void startFrame(Graphics2D g) { // initialize buffer if (doubleBuffer == null || doubleBuffer.getWidth() != viewWindow.getWidth() || doubleBuffer.getHeight() != viewWindow.getHeight()) { doubleBuffer = new BufferedImage(viewWindow.getWidth(), viewWindow .getHeight(), BufferedImage.TYPE_USHORT_565_RGB); //doubleBuffer = g.getDeviceConfiguration().createCompatibleImage( //viewWindow.getWidth(), viewWindow.getHeight()); DataBuffer dest = doubleBuffer.getRaster().getDataBuffer(); doubleBufferData = ((DataBufferUShort) dest).getData(); } // clear view if (clearViewEveryFrame) { for (int i = 0; i < doubleBufferData.length; i++) { doubleBufferData[i] = 0; } } } public void endFrame(Graphics2D g) { // draw the double buffer onto the screen g.drawImage(doubleBuffer, viewWindow.getLeftOffset(), viewWindow .getTopOffset(), null); } protected void drawCurrentPolygon(Graphics2D g) { if (!(sourcePolygon instanceof TexturedPolygon3D)) { // not a textured polygon - return return; } TexturedPolygon3D poly = (TexturedPolygon3D) destPolygon; Texture texture = poly.getTexture(); ScanRenderer scanRenderer = (ScanRenderer) scanRenderers.get(texture .getClass()); scanRenderer.setTexture(texture); Rectangle3D textureBounds = poly.getTextureBounds(); a.setToCrossProduct(textureBounds.getDirectionV(), textureBounds .getOrigin()); b.setToCrossProduct(textureBounds.getOrigin(), textureBounds .getDirectionU()); c.setToCrossProduct(textureBounds.getDirectionU(), textureBounds .getDirectionV()); int y = scanConverter.getTopBoundary(); viewPos.y = viewWindow.convertFromScreenYToViewY(y); viewPos.z = -viewWindow.getDistance(); while (y <= scanConverter.getBottomBoundary()) { ScanConverter.Scan scan = scanConverter.getScan(y); if (scan.isValid()) { viewPos.x = viewWindow.convertFromScreenXToViewX(scan.left); int offset = (y - viewWindow.getTopOffset()) * viewWindow.getWidth() + (scan.left - viewWindow.getLeftOffset()); scanRenderer.render(offset, scan.left, scan.right); } y++; viewPos.y--; } } /** * The ScanRenderer class is an abstract inner class of * FastTexturedPolygonRenderer that provides an interface for rendering a * horizontal scan line. */ public abstract class ScanRenderer { protected Texture currentTexture; public void setTexture(Texture texture) { this.currentTexture = texture; } public abstract void render(int offset, int left, int right); } //================================================ // FASTEST METHOD: no texture (for comparison) //================================================ public class Method0 extends ScanRenderer { public void render(int offset, int left, int right) { for (int x = left; x <= right; x++) { doubleBufferData[offset++] = (short) 0x0007; } } } //================================================ // METHOD 1: access pixel buffers directly // and use textures sizes that are a power of 2 //================================================ public class Method1 extends ScanRenderer { public void render(int offset, int left, int right) { for (int x = left; x <= right; x++) { int tx = (int) (a.getDotProduct(viewPos) / c .getDotProduct(viewPos)); int ty = (int) (b.getDotProduct(viewPos) / c .getDotProduct(viewPos)); doubleBufferData[offset++] = currentTexture.getColor(tx, ty); viewPos.x++; } } } //================================================ // METHOD 2: avoid redundant calculations //================================================ public class Method2 extends ScanRenderer { public void render(int offset, int left, int right) { float u = a.getDotProduct(viewPos); float v = b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = a.x; float dv = b.x; float dz = c.x; for (int x = left; x <= right; x++) { doubleBufferData[offset++] = currentTexture.getColor( (int) (u / z), (int) (v / z)); u += du; v += dv; z += dz; } } } //================================================ // METHOD 3: use ints instead of floats //================================================ public class Method3 extends ScanRenderer { public void render(int offset, int left, int right) { int u = (int) (SCALE * a.getDotProduct(viewPos)); int v = (int) (SCALE * b.getDotProduct(viewPos)); int z = (int) (SCALE * c.getDotProduct(viewPos)); int du = (int) (SCALE * a.x); int dv = (int) (SCALE * b.x); int dz = (int) (SCALE * c.x); for (int x = left; x <= right; x++) { doubleBufferData[offset++] = currentTexture.getColor(u / z, v / z); u += du; v += dv; z += dz; } } } //================================================ // METHOD 4: reduce the number of divides // (interpolate every 16 pixels) // Also, apply a VM optimization by referring to // the texture's class rather than it's parent class. //================================================ // the following three ScanRenderers are the same, but refer // to textures explicitly as either a PowerOf2Texture, a // ShadedTexture, or a ShadedSurface. // This allows HotSpot to do some inlining of the textures' // getColor() method, which significantly increases // performance. public class PowerOf2TextureRenderer extends ScanRenderer { public void render(int offset, int left, int right) { PowerOf2Texture texture = (PowerOf2Texture) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += interpSize; } } } } public class ShadedTextureRenderer extends ScanRenderer { public void render(int offset, int left, int right) { ShadedTexture texture = (ShadedTexture) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += interpSize; } } } } public class ShadedSurfaceRenderer extends ScanRenderer { public int checkBounds(int vScaled, int bounds) { int v = vScaled >> SCALE_BITS; if (v < 0) { vScaled = 0; } else if (v >= bounds) { vScaled = (bounds - 1) << SCALE_BITS; } return vScaled; } public void render(int offset, int left, int right) { ShadedSurface texture = (ShadedSurface) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); // make sure tx, ty, nextTx, and nextTy are // all within bounds tx = checkBounds(tx, texture.getWidth()); ty = checkBounds(ty, texture.getHeight()); nextTx = checkBounds(nextTx, texture.getWidth()); nextTy = checkBounds(nextTy, texture.getHeight()); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); tx += dtx; ty += dty; } x += interpSize; } } } } } /** * The ShadedSurfacePolygonRenderer is a PolygonRenderer that renders polygons * with ShadedSurfaces. It keeps track of built surfaces, and clears any * surfaces that weren't used in the last rendered frame to save memory. */ class ShadedSurfacePolygonRenderer extends FastTexturedPolygonRenderer { private List builtSurfaces = new LinkedList(); public ShadedSurfacePolygonRenderer(Transform3D camera, ViewWindow viewWindow) { this(camera, viewWindow, true); } public ShadedSurfacePolygonRenderer(Transform3D camera, ViewWindow viewWindow, boolean eraseView) { super(camera, viewWindow, eraseView); } public void endFrame(Graphics2D g) { super.endFrame(g); // clear all built surfaces that weren't used this frame. Iterator i = builtSurfaces.iterator(); while (i.hasNext()) { ShadedSurface surface = (ShadedSurface) i.next(); if (surface.isDirty()) { surface.clearSurface(); i.remove(); } else { surface.setDirty(true); } } } protected void drawCurrentPolygon(Graphics2D g) { buildSurface(); super.drawCurrentPolygon(g); } /** * Builds the surface of the polygon if it has a ShadedSurface that is * cleared. */ protected void buildSurface() { // build surface, if needed if (sourcePolygon instanceof TexturedPolygon3D) { Texture texture = ((TexturedPolygon3D) sourcePolygon).getTexture(); if (texture instanceof ShadedSurface) { ShadedSurface surface = (ShadedSurface) texture; if (surface.isCleared()) { surface.buildSurface(); builtSurfaces.add(surface); } surface.setDirty(false); } } } } /** * The ZBufferedRenderer is a PolygonRenderer that renders polygons with a * Z-Buffer to ensure correct rendering (closer objects appear in front of * farther away objects). */ class ZBufferedRenderer extends ShadedSurfacePolygonRenderer implements GameObjectRenderer { /** * The minimum distance for z-buffering. Larger values give more accurate * calculations for further distances. */ protected static final int MIN_DISTANCE = 12; protected TexturedPolygon3D temp; protected ZBuffer zBuffer; // used for calculating depth protected float w; public ZBufferedRenderer(Transform3D camera, ViewWindow viewWindow) { this(camera, viewWindow, true); } public ZBufferedRenderer(Transform3D camera, ViewWindow viewWindow, boolean eraseView) { super(camera, viewWindow, eraseView); temp = new TexturedPolygon3D(); } protected void init() { destPolygon = new TexturedPolygon3D(); scanConverter = new ScanConverter(viewWindow); // create renders for each texture (HotSpot optimization) scanRenderers = new HashMap(); scanRenderers .put(PowerOf2Texture.class, new PowerOf2TextureZRenderer()); scanRenderers.put(ShadedTexture.class, new ShadedTextureZRenderer()); scanRenderers.put(ShadedSurface.class, new ShadedSurfaceZRenderer()); } public void startFrame(Graphics2D g) { super.startFrame(g); // initialize depth buffer if (zBuffer == null || zBuffer.getWidth() != viewWindow.getWidth() || zBuffer.getHeight() != viewWindow.getHeight()) { zBuffer = new ZBuffer(viewWindow.getWidth(), viewWindow.getHeight()); } else if (clearViewEveryFrame) { zBuffer.clear(); } } public boolean draw(Graphics2D g, GameObject object) { return draw(g, object.getPolygonGroup()); } public boolean draw(Graphics2D g, PolygonGroup group) { boolean visible = false; group.resetIterator(); while (group.hasNext()) { group.nextPolygonTransformed(temp); visible |= draw(g, temp); } return visible; } protected void drawCurrentPolygon(Graphics2D g) { if (!(sourcePolygon instanceof TexturedPolygon3D)) { // not a textured polygon - return return; } buildSurface(); TexturedPolygon3D poly = (TexturedPolygon3D) destPolygon; Texture texture = poly.getTexture(); ScanRenderer scanRenderer = (ScanRenderer) scanRenderers.get(texture .getClass()); scanRenderer.setTexture(texture); Rectangle3D textureBounds = poly.getTextureBounds(); a.setToCrossProduct(textureBounds.getDirectionV(), textureBounds .getOrigin()); b.setToCrossProduct(textureBounds.getOrigin(), textureBounds .getDirectionU()); c.setToCrossProduct(textureBounds.getDirectionU(), textureBounds .getDirectionV()); // w is used to compute depth at each pixel w = SCALE * MIN_DISTANCE * Short.MAX_VALUE / (viewWindow.getDistance() * c.getDotProduct(textureBounds .getOrigin())); int y = scanConverter.getTopBoundary(); viewPos.y = viewWindow.convertFromScreenYToViewY(y); viewPos.z = -viewWindow.getDistance(); while (y <= scanConverter.getBottomBoundary()) { ScanConverter.Scan scan = scanConverter.getScan(y); if (scan.isValid()) { viewPos.x = viewWindow.convertFromScreenXToViewX(scan.left); int offset = (y - viewWindow.getTopOffset()) * viewWindow.getWidth() + (scan.left - viewWindow.getLeftOffset()); scanRenderer.render(offset, scan.left, scan.right); } y++; viewPos.y--; } } // the following three ScanRenderers are the same, but refer // to textures explicitly as either a PowerOf2Texture, a // ShadedTexture, or a ShadedSurface. // This allows HotSpot to do some inlining of the textures' // getColor() method, which significantly increases // performance. public class PowerOf2TextureZRenderer extends ScanRenderer { public void render(int offset, int left, int right) { PowerOf2Texture texture = (PowerOf2Texture) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int depth = (int) (w * z); int dDepth = (int) (w * c.x); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset++] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += interpSize; } } } } public class ShadedTextureZRenderer extends ScanRenderer { public void render(int offset, int left, int right) { ShadedTexture texture = (ShadedTexture) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int depth = (int) (w * z); int dDepth = (int) (w * c.x); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += interpSize; } } } } public class ShadedSurfaceZRenderer extends ScanRenderer { public int checkBounds(int vScaled, int bounds) { int v = vScaled >> SCALE_BITS; if (v < 0) { vScaled = 0; } else if (v >= bounds) { vScaled = (bounds - 1) << SCALE_BITS; } return vScaled; } public void render(int offset, int left, int right) { ShadedSurface texture = (ShadedSurface) currentTexture; float u = SCALE * a.getDotProduct(viewPos); float v = SCALE * b.getDotProduct(viewPos); float z = c.getDotProduct(viewPos); float du = INTERP_SIZE * SCALE * a.x; float dv = INTERP_SIZE * SCALE * b.x; float dz = INTERP_SIZE * c.x; int nextTx = (int) (u / z); int nextTy = (int) (v / z); int depth = (int) (w * z); int dDepth = (int) (w * c.x); int x = left; while (x <= right) { int tx = nextTx; int ty = nextTy; int maxLength = right - x + 1; if (maxLength > INTERP_SIZE) { u += du; v += dv; z += dz; nextTx = (int) (u / z); nextTy = (int) (v / z); int dtx = (nextTx - tx) >> INTERP_SIZE_BITS; int dty = (nextTy - ty) >> INTERP_SIZE_BITS; int endOffset = offset + INTERP_SIZE; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += INTERP_SIZE; } else { // variable interpolation size int interpSize = maxLength; u += interpSize * SCALE * a.x; v += interpSize * SCALE * b.x; z += interpSize * c.x; nextTx = (int) (u / z); nextTy = (int) (v / z); // make sure tx, ty, nextTx, and nextTy are // all within bounds tx = checkBounds(tx, texture.getWidth()); ty = checkBounds(ty, texture.getHeight()); nextTx = checkBounds(nextTx, texture.getWidth()); nextTy = checkBounds(nextTy, texture.getHeight()); int dtx = (nextTx - tx) / interpSize; int dty = (nextTy - ty) / interpSize; int endOffset = offset + interpSize; while (offset < endOffset) { if (zBuffer.checkDepth(offset, (short) (depth >> SCALE_BITS))) { doubleBufferData[offset] = texture.getColor( tx >> SCALE_BITS, ty >> SCALE_BITS); } offset++; tx += dtx; ty += dty; depth += dDepth; } x += interpSize; } } } } } /** * The ZBuffer class implements a z-buffer, or depth-buffer, that records the * depth of every pixel in a 3D view window. The value recorded for each pixel * is the inverse of the depth (1/z), so there is higher precision for close * objects and a lower precision for far-away objects (where high depth * precision is not as visually important). */ class ZBuffer { private short[] depthBuffer; private int width; private int height; /** * Creates a new z-buffer with the specified width and height. */ public ZBuffer(int width, int height) { depthBuffer = new short[width * height]; this.width = width; this.height = height; clear(); } /** * Gets the width of this z-buffer. */ public int getWidth() { return width; } /** * Gets the height of this z-buffer. */ public int getHeight() { return height; } /** * Gets the array used for the depth buffer */ public short[] getArray() { return depthBuffer; } /** * Clears the z-buffer. All depth values are set to 0. */ public void clear() { for (int i = 0; i < depthBuffer.length; i++) { depthBuffer[i] = 0; } } /** * Sets the depth of the pixel at at specified offset, overwriting its * current depth. */ public void setDepth(int offset, short depth) { depthBuffer[offset] = depth; } /** * Checks the depth at the specified offset, and if the specified depth is * lower (is greater than or equal to the current depth at the specified * offset), then the depth is set and this method returns true. Otherwise, * no action occurs and this method returns false. */ public boolean checkDepth(int offset, short depth) { if (depth >= depthBuffer[offset]) { depthBuffer[offset] = depth; return true; } else { return false; } } } /** * The BSPRenderer class is a renderer capable of drawing polygons in a BSP tree * and any polygon objects in the scene. When drawing BSP polygons, the * BSPRenderer writes the BSP polygon depth to a z-buffer. Polygon objects use * the z-buffer to determine their visibility within the scene on a per-pixel * basis. */ class BSPRenderer extends ZBufferedRenderer implements BSPTreeTraverseListener { /** * How many polygons to draw before checking if the view is filled. */ private static final int FILLED_CHECK = 3; protected HashMap bspScanRenderers; protected BSPTreeTraverser traverser; protected Graphics2D currentGraphics2D; protected boolean viewNotFilledFirstTime; protected int polygonCount; /** * Creates a new BSP renderer with the specified camera object and view * window. */ public BSPRenderer(Transform3D camera, ViewWindow viewWindow) { super(camera, viewWindow, false); viewNotFilledFirstTime = true; traverser = new BSPTreeTraverser(this); } /** * Sets the GamebjectManager. The BSP traverser sets the visibily of the * objects. */ public void setGameObjectManager(GameObjectManager gameObjectManager) { traverser.setGameObjectManager(gameObjectManager); } protected void init() { destPolygon = new TexturedPolygon3D(); scanConverter = new SortedScanConverter(viewWindow); // create renderers for each texture (HotSpot optimization) scanRenderers = new HashMap(); scanRenderers .put(PowerOf2Texture.class, new PowerOf2TextureZRenderer()); scanRenderers.put(ShadedTexture.class, new ShadedTextureZRenderer()); scanRenderers.put(ShadedSurface.class, new ShadedSurfaceZRenderer()); // same thing, for bsp tree polygons bspScanRenderers = new HashMap(); bspScanRenderers.put(PowerOf2Texture.class, new PowerOf2TextureRenderer()); bspScanRenderers.put(ShadedTexture.class, new ShadedTextureRenderer()); bspScanRenderers.put(ShadedSurface.class, new ShadedSurfaceRenderer()); } public void startFrame(Graphics2D g) { super.startFrame(g); ((SortedScanConverter) scanConverter).clear(); polygonCount = 0; } public void endFrame(Graphics2D g) { super.endFrame(g); if (!((SortedScanConverter) scanConverter).isFilled()) { g.drawString("View not completely filled", 5, viewWindow .getTopOffset() + viewWindow.getHeight() - 5); if (viewNotFilledFirstTime) { viewNotFilledFirstTime = false; // print message to console in case user missed it System.out.println("View not completely filled."); } // clear the background next time clearViewEveryFrame = true; } else { clearViewEveryFrame = false; } } /** * Draws the visible polygons in a BSP tree based on the camera location. * The polygons are drawn front-to-back. */ public void draw(Graphics2D g, BSPTree tree) { ((SortedScanConverter) scanConverter).setSortedMode(true); currentGraphics2D = g; traverser.traverse(tree, camera.getLocation()); ((SortedScanConverter) scanConverter).setSortedMode(false); } // from the BSPTreeTraverseListener interface public boolean visitPolygon(BSPPolygon poly, boolean isBack) { SortedScanConverter scanConverter = (SortedScanConverter) this.scanConverter; draw(currentGraphics2D, poly); // check if view is filled every three polygons polygonCount++; if (polygonCount == FILLED_CHECK) { polygonCount = 0; return !((SortedScanConverter) scanConverter).isFilled(); } return true; } protected void drawCurrentPolygon(Graphics2D g) { if (!(sourcePolygon instanceof BSPPolygon)) { super.drawCurrentPolygon(g); return; } buildSurface(); SortedScanConverter scanConverter = (SortedScanConverter) this.scanConverter; TexturedPolygon3D poly = (TexturedPolygon3D) destPolygon; Texture texture = poly.getTexture(); ScanRenderer scanRenderer = (ScanRenderer) bspScanRenderers.get(texture .getClass()); scanRenderer.setTexture(texture); Rectangle3D textureBounds = poly.getTextureBounds(); a.setToCrossProduct(textureBounds.getDirectionV(), textureBounds .getOrigin()); b.setToCrossProduct(textureBounds.getOrigin(), textureBounds .getDirectionU()); c.setToCrossProduct(textureBounds.getDirectionU(), textureBounds .getDirectionV()); // w is used to compute depth at each pixel w = SCALE * MIN_DISTANCE * Short.MAX_VALUE / (viewWindow.getDistance() * c.getDotProduct(textureBounds .getOrigin())); int y = scanConverter.getTopBoundary(); viewPos.y = viewWindow.convertFromScreenYToViewY(y); viewPos.z = -viewWindow.getDistance(); while (y <= scanConverter.getBottomBoundary()) { for (int i = 0; i < scanConverter.getNumScans(y); i++) { ScanConverter.Scan scan = scanConverter.getScan(y, i); if (scan.isValid()) { viewPos.x = viewWindow.convertFromScreenXToViewX(scan.left); int offset = (y - viewWindow.getTopOffset()) * viewWindow.getWidth() + (scan.left - viewWindow.getLeftOffset()); scanRenderer.render(offset, scan.left, scan.right); setScanDepth(offset, scan.right - scan.left + 1); } } y++; viewPos.y--; } } /** * Sets the z-depth for the current polygon scan. */ private void setScanDepth(int offset, int width) { float z = c.getDotProduct(viewPos); float dz = c.x; int depth = (int) (w * z); int dDepth = (int) (w * dz); short[] depthBuffer = zBuffer.getArray(); int endOffset = offset + width; // depth will be constant for many floors and ceilings if (dDepth == 0) { short d = (short) (depth >> SCALE_BITS); while (offset < endOffset) { depthBuffer[offset++] = d; } } else { while (offset < endOffset) { depthBuffer[offset++] = (short) (depth >> SCALE_BITS); depth += dDepth; } } } } /** * A ScanConverter used to draw sorted polygons from front-to-back with no * overdraw. Polygons are added and clipped to a list of what's in the view * window. Call clear() before drawing every frame. */ class SortedScanConverter extends ScanConverter { protected static final int DEFAULT_SCANLIST_CAPACITY = 8; private SortedScanList[] viewScans; private SortedScanList[] polygonScans; private boolean sortedMode; /** * Creates a new SortedScanConverter for the specified ViewWindow. The * ViewWindow's properties can change in between scan conversions. By * default, sorted mode is off, but can be turned on by calling * setSortedMode(). */ public SortedScanConverter(ViewWindow view) { super(view); sortedMode = false; } /** * Clears the current view scan. Call this method every frame. */ public void clear() { if (viewScans != null) { for (int y = 0; y < viewScans.length; y++) { viewScans[y].clear(); } } } /** * Sets sorted mode, so this scan converter can assume the polygons are * drawn front-to-back, and should be clipped against polygons already * scanned for this view. */ public void setSortedMode(boolean b) { sortedMode = b; } /** * Gets the nth scan for the specified row. */ public Scan getScan(int y, int index) { return polygonScans[y].getScan(index); } /** * Gets the number of scans for the specified row. */ public int getNumScans(int y) { return polygonScans[y].getNumScans(); } /** * Checks if the view is filled. */ public boolean isFilled() { if (viewScans == null) { return false; } int left = view.getLeftOffset(); int right = left + view.getWidth() - 1; for (int y = view.getTopOffset(); y < viewScans.length; y++) { if (!viewScans[y].equals(left, right)) { return false; } } return true; } protected void ensureCapacity() { super.ensureCapacity(); int height = view.getTopOffset() + view.getHeight(); int oldHeight = (viewScans == null) ? 0 : viewScans.length; if (height != oldHeight) { SortedScanList[] newViewScans = new SortedScanList[height]; SortedScanList[] newPolygonScans = new SortedScanList[height]; if (oldHeight != 0) { System.arraycopy(viewScans, 0, newViewScans, 0, Math.min( height, oldHeight)); System.arraycopy(polygonScans, 0, newPolygonScans, 0, Math.min( height, oldHeight)); } viewScans = newViewScans; polygonScans = newPolygonScans; for (int i = oldHeight; i < height; i++) { viewScans[i] = new SortedScanList(); polygonScans[i] = new SortedScanList(); } } } /** * Scan-converts a polygon, and if sortedMode is on, adds and clips it to a * list of what's in the view window. */ public boolean convert(Polygon3D polygon) { boolean visible = super.convert(polygon); if (!sortedMode || !visible) { return visible; } // clip the scan to what's already in the view visible = false; for (int y = getTopBoundary(); y <= getBottomBoundary(); y++) { Scan scan = getScan(y); SortedScanList diff = polygonScans[y]; diff.clear(); if (scan.isValid()) { viewScans[y].add(scan.left, scan.right, diff); visible |= (polygonScans[y].getNumScans() > 0); } } return visible; } /** * The SortedScanList class represents a series of scans for a row. New * scans can be added and clipped to what's visible in the row. */ private static class SortedScanList { private int length; private Scan[] scans; /** * Creates a new SortedScanList with the default capacity (number of * scans per row). */ public SortedScanList() { this(DEFAULT_SCANLIST_CAPACITY); } /** * Creates a new SortedScanList with the specified capacity (number of * scans per row). */ public SortedScanList(int capacity) { scans = new Scan[capacity]; for (int i = 0; i < capacity; i++) { scans[i] = new Scan(); } length = 0; } /** * Clears this list of scans. */ public void clear() { length = 0; } /** * Clears the number of scans in this list. */ public int getNumScans() { return length; } /** * Gets the nth scan in this list. */ public Scan getScan(int index) { return scans[index]; } /** * Checks if this scan list has only one scan and that scan is equal to * the specified left and right values. */ public boolean equals(int left, int right) { return (length == 1 && scans[0].equals(left, right)); } /** * Add and clip the scan to this row, putting what is visible (the * difference) in the specified SortedScanList. */ public void add(int left, int right, SortedScanList diff) { for (int i = 0; i < length && left <= right; i++) { Scan scan = scans[i]; int maxRight = scan.left - 1; if (left <= maxRight) { if (right < maxRight) { diff.add(left, right); insert(left, right, i); return; } else { diff.add(left, maxRight); scan.left = left; left = scan.right + 1; if (merge(i)) { i--; } } } else if (left <= scan.right) { left = scan.right + 1; } } if (left <= right) { insert(left, right, length); diff.add(left, right); } } // add() helper methods private void growCapacity() { int capacity = scans.length; int newCapacity = capacity * 2; Scan[] newScans = new Scan[newCapacity]; System.arraycopy(scans, 0, newScans, 0, capacity); for (int i = length; i < newCapacity; i++) { newScans[i] = new Scan(); } scans = newScans; } private void add(int left, int right) { if (length == scans.length) { growCapacity(); } scans[length].setTo(left, right); length++; } private void insert(int left, int right, int index) { if (index > 0) { Scan prevScan = scans[index - 1]; if (prevScan.right == left - 1) { prevScan.right = right; return; } } if (length == scans.length) { growCapacity(); } Scan last = scans[length]; last.setTo(left, right); for (int i = length; i > index; i--) { scans[i] = scans[i - 1]; } scans[index] = last; length++; } private void remove(int index) { Scan removed = scans[index]; for (int i = index; i < length - 1; i++) { scans[i] = scans[i + 1]; } scans[length - 1] = removed; length--; } private boolean merge(int index) { if (index > 0) { Scan prevScan = scans[index - 1]; Scan thisScan = scans[index]; if (prevScan.right == thisScan.left - 1) { prevScan.right = thisScan.right; remove(index); return true; } } return false; } } } /** * The Bot game object is a small static bot with a turret that turns to face * the player. */ class Bot extends GameObject { private static final float TURN_SPEED = .0005f; private static final long DECISION_TIME = 2000; protected MovingTransform3D mainTransform; protected MovingTransform3D turretTransform; protected long timeUntilDecision; protected Vector3D lastPlayerLocation; public Bot(PolygonGroup polygonGroup) { super(polygonGroup); mainTransform = polygonGroup.getTransform(); PolygonGroup turret = polygonGroup.getGroup("turret"); if (turret != null) { turretTransform = turret.getTransform(); } else { System.out.println("No turret defined!"); } lastPlayerLocation = new Vector3D(); } public void notifyVisible(boolean visible) { if (!isDestroyed()) { if (visible) { setState(STATE_ACTIVE); } else { setState(STATE_IDLE); } } } public void update(GameObject player, long elapsedTime) { if (turretTransform == null || isIdle()) { return; } Vector3D playerLocation = player.getLocation(); if (playerLocation.equals(lastPlayerLocation)) { timeUntilDecision = DECISION_TIME; } else { timeUntilDecision -= elapsedTime; if (timeUntilDecision <= 0 || !turretTransform.isTurningY()) { float x = player.getX() - getX(); float z = player.getZ() - getZ(); turretTransform.turnYTo(x, z, -mainTransform.getAngleY(), TURN_SPEED); lastPlayerLocation.setTo(playerLocation); timeUntilDecision = DECISION_TIME; } } super.update(player, elapsedTime); } } BSPMapTest.zip( 148 k)