* * Successful retrievals using get(key) and containsKey(key) usually run without * locking. Unsuccessful ones (i.e., when the key is not present) do involve * brief synchronization (locking). Also, the size and isEmpty methods are * always synchronized. * *
* Because retrieval operations can ordinarily overlap with writing operations * (i.e., put, remove, and their derivatives), retrievals can only be guaranteed * to return the results of the most recently completed operations * holding upon their onset. Retrieval operations may or may not return results * reflecting in-progress writing operations. However, the retrieval operations * do always return consistent results -- either those holding before any single * modification or after it, but never a nonsense result. For aggregate * operations such as putAll and clear, concurrent reads may reflect insertion * or removal of only some entries. In those rare contexts in which you use a * hash table to synchronize operations across threads (for example, to prevent * reads until after clears), you should either encase operations in * synchronized blocks, or instead use java.util.Hashtable. * *
*
* This class also supports optional guaranteed exclusive reads, simply by
* surrounding a call within a synchronized block, as in
* ConcurrentReaderHashMap t; ... Object v;
* synchronized(t) { v = t.get(k); }
*
* But this is not usually necessary in practice. For example, it is generally
* inefficient to write:
*
*
* ConcurrentReaderHashMap t; ... // Inefficient version * Object key; ... * Object value; ... * synchronized(t) { * if (!t.containsKey(key)) * t.put(key, value); * // other code if not previously present * } * else { * // other code if it was previously present * } * } ** * Instead, if the values are intended to be the same in each case, just take * advantage of the fact that put returns null if the key was not previously * present: * *
* ConcurrentReaderHashMap t; ... // Use this instead * Object key; ... * Object value; ... * Object oldValue = t.put(key, value); * if (oldValue == null) { * // other code if not previously present * } * else { * // other code if it was previously present * } ** *
* * Iterators and Enumerations (i.e., those returned by keySet().iterator(), * entrySet().iterator(), values().iterator(), keys(), and elements()) return * elements reflecting the state of the hash table at some point at or since the * creation of the iterator/enumeration. They will return at most one instance * of each element (via next()/nextElement()), but might or might not reflect * puts and removes that have been processed since they were created. They do * not throw ConcurrentModificationException. However, these * iterators are designed to be used by only one thread at a time. Sharing an * iterator across multiple threads may lead to unpredictable results if the * table is being concurrently modified. Again, you can ensure interference-free * iteration by enclosing the iteration in a synchronized block. *
* * This class may be used as a direct replacement for any use of * java.util.Hashtable that does not depend on readers being blocked during * updates. Like Hashtable but unlike java.util.HashMap, this class does NOT * allow null to be used as a key or value. This class is also * typically faster than ConcurrentHashMap when there is usually only one thread * updating the table, but possibly many retrieving values from it. *
* * Implementation note: A slightly faster implementation of this class will be * possible once planned Java Memory Model revisions are in place. * *
[
* Introduction to this package. ]
*
*/
public class ConcurrentReaderHashMap extends AbstractMap implements Map, Cloneable, Serializable
{
private static final long serialVersionUID = 1L;
/*
* The basic strategy is an optimistic-style scheme based on the guarantee
* that the hash table and its lists are always kept in a consistent enough
* state to be read without locking:
*
* Read operations first proceed without locking, by traversing the
* apparently correct list of the apparently correct bin. If an entry is
* found, but not invalidated (value field null), it is returned. If not
* found, operations must recheck (after a memory barrier) to make sure they
* are using both the right list and the right table (which can change under
* resizes). If invalidated, reads must acquire main update lock to wait out
* the update, and then re-traverse.
*
* All list additions are at the front of each bin, making it easy to check
* changes, and also fast to traverse. Entry next pointers are never
* assigned. Remove() builds new nodes when necessary to preserve this.
*
* Remove() (also clear()) invalidates removed nodes to alert read
* operations that they must wait out the full modifications.
*
*/
/** A Serializable class for barrier lock * */
protected static class BarrierLock implements java.io.Serializable
{
private static final long serialVersionUID = 1L;
}
/**
* Lock used only for its memory effects.
*/
protected final BarrierLock barrierLock = new BarrierLock();
/**
* field written to only to guarantee lock ordering.
*/
protected transient Object lastWrite;
/**
* Force a memory synchronization that will cause all readers to see table.
* Call only when already holding main synch lock.
* @param x
*/
protected final void recordModification(Object x)
{
synchronized (barrierLock)
{
lastWrite = x;
}
}
/**
* Get ref to table; the reference and the cells it accesses will be at
* least as fresh as from last use of barrierLock
* @return table cells
*/
protected final Entry[] getTableForReading()
{
synchronized (barrierLock)
{
return table;
}
}
/**
* The default initial number of table slots for this table (32). Used when
* not otherwise specified in constructor.
*/
public static final int DEFAULT_INITIAL_CAPACITY = 32;
/**
* The minimum capacity, used if a lower value is implicitly specified by
* either of the constructors with arguments. MUST be a power of two.
*/
private static final int MINIMUM_CAPACITY = 4;
/**
* The maximum capacity, used if a higher value is implicitly specified by
* either of the constructors with arguments. MUST be a power of two <= 1<<30.
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The default load factor for this table (1.0). Used when not otherwise
* specified in constructor.
*/
public static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The hash table data.
*/
protected transient Entry[] table;
/**
* The total number of mappings in the hash table.
*/
protected transient int count;
/**
* The table is rehashed when its size exceeds this threshold. (The value of
* this field is always (int)(capacity * loadFactor).)
*
* @serial
*/
protected int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
protected float loadFactor;
/**
* Returns the appropriate capacity (power of two) for the specified initial
* capacity argument.
* @param initialCapacity
* @return appropriate capacity
*/
private int p2capacity(int initialCapacity)
{
int cap = initialCapacity;
// Compute the appropriate capacity
int result;
if (cap > MAXIMUM_CAPACITY || cap < 0)
{
result = MAXIMUM_CAPACITY;
}
else
{
result = MINIMUM_CAPACITY;
while (result < cap)
{
result <<= 1;
}
}
return result;
}
/**
* Return hash code for Object x. Since we are using power-of-two tables, it
* is worth the effort to improve hashcode via the same multiplicative
* scheme as used in IdentityHashMap.
* @param x
* @return hash code
*/
private static int hash(Object x)
{
int h = x.hashCode();
// Multiply by 127 (quickly, via shifts), and mix in some high
// bits to help guard against bunching of codes that are
// consecutive or equally spaced.
return ((h << 7) - h + (h >>> 9) + (h >>> 17));
}
/**
* Check for equality of non-null references x and y.
* @param x
* @param y
* @return equality
*/
protected boolean eq(Object x, Object y)
{
return x == y || x.equals(y);
}
/**
* Constructs a new, empty map with the specified initial capacity and the
* specified load factor.
*
* @param initialCapacity
* the initial capacity The actual initial capacity is rounded to
* the nearest power of two.
* @param loadFactor
* the load factor of the ConcurrentReaderHashMap
* @throws IllegalArgumentException
* if the initial maximum number of elements is less than zero,
* or if the load factor is nonpositive.
*/
public ConcurrentReaderHashMap(int initialCapacity, float loadFactor)
{
if (loadFactor <= 0)
{
throw new IllegalArgumentException("Illegal Load factor: " + loadFactor);
}
this.loadFactor = loadFactor;
int cap = p2capacity(initialCapacity);
table = new Entry[cap];
threshold = (int)(cap * loadFactor);
}
/**
* Constructs a new, empty map with the specified initial capacity and
* default load factor.
*
* @param initialCapacity
* the initial capacity of the ConcurrentReaderHashMap.
* @throws IllegalArgumentException
* if the initial maximum number of elements is less than zero.
*/
public ConcurrentReaderHashMap(int initialCapacity)
{
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs a new, empty map with a default initial capacity and load
* factor.
*/
public ConcurrentReaderHashMap()
{
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs a new map with the same mappings as the given map. The map is
* created with a capacity of twice the number of mappings in the given map
* or 16 (whichever is greater), and a default load factor.
* @param t
*/
public ConcurrentReaderHashMap(Map t)
{
this(Math.max((int)(t.size() / DEFAULT_LOAD_FACTOR) + 1, 16), DEFAULT_LOAD_FACTOR);
putAll(t);
}
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map.
*/
public synchronized int size()
{
return count;
}
/**
* Returns true if this map contains no key-value mappings.
*
* @return true if this map contains no key-value mappings.
*/
public synchronized boolean isEmpty()
{
return count == 0;
}
/**
* Returns the value to which the specified key is mapped in this table.
*
* @param key
* a key in the table.
* @return the value to which the key is mapped in this table;
* null
if the key is not mapped to any value in this
* table.
* @exception NullPointerException
* if the key is null
.
* @see #put(Object, Object)
*/
public Object get(Object key)
{
// throw null pointer exception if key null
int hash = hash(key);
/*
* Start off at the apparently correct bin. If entry is found, we need
* to check after a barrier anyway. If not found, we need a barrier to
* check if we are actually in right bin. So either way, we encounter
* only one barrier unless we need to retry. And we only need to fully
* synchronize if there have been concurrent modifications.
*/
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e = first;
for (;;)
{
if (e == null)
{
// If key apparently not there, check to
// make sure this was a valid read
Entry[] reread = getTableForReading();
if (tab == reread && first == tab[index])
{
return null;
}
else
{
// Wrong list -- must restart traversal at new first
tab = reread;
e = first = tab[index = hash & (tab.length - 1)];
}
}
else if (e.hash == hash && eq(key, e.key))
{
Object value = e.value;
if (value != null)
{
return value;
}
// Entry was invalidated during deletion. But it could
// have been re-inserted, so we must retraverse.
// To avoid useless contention, get lock to wait out
// modifications
// before retraversing.
synchronized (this)
{
tab = table;
}
e = first = tab[index = hash & (tab.length - 1)];
}
else
{
e = e.next;
}
}
}
/**
* Tests if the specified object is a key in this table.
*
* @param key
* possible key.
* @return true
if and only if the specified object is a key
* in this table, as determined by the equals method;
* false
otherwise.
* @exception NullPointerException
* if the key is null
.
* @see #contains(Object)
*/
public boolean containsKey(Object key)
{
return get(key) != null;
}
/**
* Maps the specified key
to the specified value
* in this table. Neither the key nor the value can be null
.
*
*
* The value can be retrieved by calling the get
method with
* a key that is equal to the original key.
*
* @param key
* the table key.
* @param value
* the value.
* @return the previous value of the specified key in this table, or
* null
if it did not have one.
* @exception NullPointerException
* if the key or value is null
.
* @see Object#equals(Object)
* @see #get(Object)
*/
public Object put(Object key, Object value)
{
if (value == null)
{
throw new IllegalArgumentException("Value must not be null");
}
int hash = hash(key);
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e;
for (e = first; e != null; e = e.next)
{
if (e.hash == hash && eq(key, e.key))
{
break;
}
}
synchronized (this)
{
if (tab == table)
{
if (e == null)
{
// make sure we are adding to correct list
if (first == tab[index])
{
// Add to front of list
Entry newEntry = new Entry(hash, key, value, first);
tab[index] = newEntry;
if (++count >= threshold)
{
rehash();
}
else
{
recordModification(newEntry);
}
return null;
}
}
else
{
Object oldValue = e.value;
if (first == tab[index] && oldValue != null)
{
e.value = value;
return oldValue;
}
}
}
// retry if wrong list or lost race against concurrent remove
return sput(key, value, hash);
}
}
/**
* Continuation of put(), called only when synch lock is held and
* interference has been detected.
* @param key
* @param value
* @param hash
* @return continuation object
*/
protected Object sput(Object key, Object value, int hash)
{
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e = first;
for (;;)
{
if (e == null)
{
Entry newEntry = new Entry(hash, key, value, first);
tab[index] = newEntry;
if (++count >= threshold)
{
rehash();
}
else
{
recordModification(newEntry);
}
return null;
}
else if (e.hash == hash && eq(key, e.key))
{
Object oldValue = e.value;
e.value = value;
return oldValue;
}
else
{
e = e.next;
}
}
}
/**
* Rehashes the contents of this map into a new table with a larger
* capacity. This method is called automatically when the number of keys in
* this map exceeds its capacity and load factor.
*/
protected void rehash()
{
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity >= MAXIMUM_CAPACITY)
{
threshold = Integer.MAX_VALUE; // avoid retriggering
return;
}
int newCapacity = oldCapacity << 1;
int mask = newCapacity - 1;
threshold = (int)(newCapacity * loadFactor);
Entry[] newTable = new Entry[newCapacity];
/*
* Reclassify nodes in each list to new Map. Because we are using
* power-of-two expansion, the elements from each bin must either stay
* at same index, or move to oldCapacity+index. We also eliminate
* unnecessary node creation by catching cases where old nodes can be
* reused because their next fields won't change. Statistically, at the
* default threshhold, only about one-sixth of them need cloning. (The
* nodes they replace will be garbage collectable as soon as they are no
* longer referenced by any reader thread that may be in the midst of
* traversing table right now.)
*/
for (int i = 0; i < oldCapacity; i++)
{
// We need to guarantee that any existing reads of old Map can
// proceed. So we cannot yet null out each bin.
Entry e = oldTable[i];
if (e != null)
{
int idx = e.hash & mask;
Entry next = e.next;
// Single node on list
if (next == null)
{
newTable[idx] = e;
}
else
{
// Reuse trailing consecutive sequence of all same bit
Entry lastRun = e;
int lastIdx = idx;
for (Entry last = next; last != null; last = last.next)
{
int k = last.hash & mask;
if (k != lastIdx)
{
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone all remaining nodes
for (Entry p = e; p != lastRun; p = p.next)
{
int k = p.hash & mask;
newTable[k] = new Entry(p.hash, p.key, p.value, newTable[k]);
}
}
}
}
table = newTable;
recordModification(newTable);
}
/**
* Removes the key (and its corresponding value) from this table. This
* method does nothing if the key is not in the table.
*
* @param key
* the key that needs to be removed.
* @return the value to which the key had been mapped in this table, or
* null
if the key did not have a mapping.
* @exception NullPointerException
* if the key is null
.
*/
public Object remove(Object key)
{
/*
* Find the entry, then 1. Set value field to null, to force get() to
* retry 2. Rebuild the list without this entry. All entries following
* removed node can stay in list, but all preceeding ones need to be
* cloned. Traversals rely on this strategy to ensure that elements will
* not be repeated during iteration.
*/
int hash = hash(key);
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e = first;
for (e = first; e != null; e = e.next)
{
if (e.hash == hash && eq(key, e.key))
{
break;
}
}
synchronized (this)
{
if (tab == table)
{
if (e == null)
{
if (first == tab[index])
{
return null;
}
}
else
{
Object oldValue = e.value;
if (first == tab[index] && oldValue != null)
{
e.value = null;
count--;
Entry head = e.next;
for (Entry p = first; p != e; p = p.next)
{
head = new Entry(p.hash, p.key, p.value, head);
}
tab[index] = head;
recordModification(head);
return oldValue;
}
}
}
// Wrong list or interference
return sremove(key, hash);
}
}
/**
* Continuation of remove(), called only when synch lock is held and
* interference has been detected.
* @param key
* @param hash
* @return continuation object
*/
protected Object sremove(Object key, int hash)
{
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
for (Entry e = first; e != null; e = e.next)
{
if (e.hash == hash && eq(key, e.key))
{
Object oldValue = e.value;
e.value = null;
count--;
Entry head = e.next;
for (Entry p = first; p != e; p = p.next)
{
head = new Entry(p.hash, p.key, p.value, head);
}
tab[index] = head;
recordModification(head);
return oldValue;
}
}
return null;
}
/**
* Returns true if this map maps one or more keys to the
* specified value. Note: This method requires a full internal traversal of
* the hash table, and so is much slower than method containsKey.
*
* @param value
* value whose presence in this map is to be tested.
* @return true if this map maps one or more keys to the
* specified value.
* @exception NullPointerException
* if the value is null
.
*/
public boolean containsValue(Object value)
{
if (value == null)
{
throw new IllegalArgumentException("Value must not be null");
}
Entry tab[] = getTableForReading();
for (int i = 0; i < tab.length; ++i)
{
for (Entry e = tab[i]; e != null; e = e.next)
{
if (value.equals(e.value))
{
return true;
}
}
}
return false;
}
/**
* Tests if some key maps into the specified value in this table. This
* operation is more expensive than the containsKey
method.
*
*
* Note that this method is identical in functionality to containsValue,
* (which is part of the Map interface in the collections framework).
*
* @param value
* a value to search for.
* @return true
if and only if some key maps to the
* value
argument in this table as determined by the
* equals method; false
otherwise.
* @exception NullPointerException
* if the value is null
.
* @see #containsKey(Object)
* @see #containsValue(Object)
* @see Map
*/
public boolean contains(Object value)
{
return containsValue(value);
}
/**
* Copies all of the mappings from the specified map to this one.
*
* These mappings replace any mappings that this map had for any of the keys
* currently in the specified Map.
*
* @param t
* Mappings to be stored in this map.
*/
public synchronized void putAll(Map t)
{
int n = t.size();
if (n == 0)
{
return;
}
// Expand enough to hold at least n elements without resizing.
// We can only resize table by factor of two at a time.
// It is faster to rehash with fewer elements, so do it now.
while (n >= threshold)
{
rehash();
}
for (Iterator it = t.entrySet().iterator(); it.hasNext();)
{
Map.Entry entry = (Map.Entry)it.next();
Object key = entry.getKey();
Object value = entry.getValue();
put(key, value);
}
}
/**
* Removes all mappings from this map.
*/
public synchronized void clear()
{
Entry tab[] = table;
for (int i = 0; i < tab.length; ++i)
{
// must invalidate all to force concurrent get's to wait and then
// retry
for (Entry e = tab[i]; e != null; e = e.next)
{
e.value = null;
}
tab[i] = null;
}
count = 0;
recordModification(tab);
}
/**
* Returns a shallow copy of this ConcurrentReaderHashMap
* instance: the keys and values themselves are not cloned.
*
* @return a shallow copy of this map.
*/
public synchronized Object clone() throws CloneNotSupportedException
{
try
{
ConcurrentReaderHashMap t = (ConcurrentReaderHashMap)super.clone();
t.keySet = null;
t.entrySet = null;
t.values = null;
Entry[] tab = table;
t.table = new Entry[tab.length];
Entry[] ttab = t.table;
for (int i = 0; i < tab.length; ++i)
{
Entry first = null;
for (Entry e = tab[i]; e != null; e = e.next)
{
first = new Entry(e.hash, e.key, e.value, first);
}
ttab[i] = first;
}
return t;
}
catch (CloneNotSupportedException e)
{
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
// Views
protected transient Set keySet = null;
protected transient Set entrySet = null;
protected transient Collection values = null;
/**
* Returns a set view of the keys contained in this map. The set is backed
* by the map, so changes to the map are reflected in the set, and
* vice-versa. The set supports element removal, which removes the
* corresponding mapping from this map, via the Iterator.remove,
* Set.remove, removeAll, retainAll, and
* clear operations. It does not support the add or
* addAll operations.
*
* @return a set view of the keys contained in this map.
*/
public Set keySet()
{
Set ks = keySet;
return (ks != null) ? ks : (keySet = new KeySet());
}
private class KeySet extends AbstractSet
{
/**
* @see Collection#iterator()
*/
public Iterator iterator()
{
return new KeyIterator();
}
/**
* @see Collection#size()
*/
public int size()
{
return ConcurrentReaderHashMap.this.size();
}
/**
* @see Collection#contains(java.lang.Object)
*/
public boolean contains(Object o)
{
return ConcurrentReaderHashMap.this.containsKey(o);
}
/**
* @see Collection#remove(java.lang.Object)
*/
public boolean remove(Object o)
{
return ConcurrentReaderHashMap.this.remove(o) != null;
}
/**
* @see Collection#clear()
*/
public void clear()
{
ConcurrentReaderHashMap.this.clear();
}
}
/**
* Returns a collection view of the values contained in this map. The
* collection is backed by the map, so changes to the map are reflected in
* the collection, and vice-versa. The collection supports element removal,
* which removes the corresponding mapping from this map, via the
* Iterator.remove, Collection.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or addAll
* operations.
*
* @return a collection view of the values contained in this map.
*/
public Collection values()
{
Collection vs = values;
return (vs != null) ? vs : (values = new Values());
}
private class Values extends AbstractCollection
{
/**
* @see Collection#iterator()
*/
public Iterator iterator()
{
return new ValueIterator();
}
/**
* @see Collection#size()
*/
public int size()
{
return ConcurrentReaderHashMap.this.size();
}
/**
* @see Collection#contains(java.lang.Object)
*/
public boolean contains(Object o)
{
return ConcurrentReaderHashMap.this.containsValue(o);
}
/**
* @see Collection#clear()
*/
public void clear()
{
ConcurrentReaderHashMap.this.clear();
}
}
/**
* Returns a collection view of the mappings contained in this map. Each
* element in the returned collection is a Map.Entry. The
* collection is backed by the map, so changes to the map are reflected in
* the collection, and vice-versa. The collection supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove, Collection.remove,
* removeAll, retainAll, and clear
* operations. It does not support the add or addAll
* operations.
*
* @return a collection view of the mappings contained in this map.
*/
public Set entrySet()
{
Set es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
}
private class EntrySet extends AbstractSet
{
/**
* @see Collection#iterator()
*/
public Iterator iterator()
{
return new HashIterator();
}
/**
* @see Collection#contains(java.lang.Object)
*/
public boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry entry = (Map.Entry)o;
Object v = ConcurrentReaderHashMap.this.get(entry.getKey());
return v != null && v.equals(entry.getValue());
}
/**
* @see Collection#remove(java.lang.Object)
*/
public boolean remove(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
return ConcurrentReaderHashMap.this.findAndRemoveEntry((Map.Entry)o);
}
/**
* @see Collection#size()
*/
public int size()
{
return ConcurrentReaderHashMap.this.size();
}
/**
* @see Collection#clear()
*/
public void clear()
{
ConcurrentReaderHashMap.this.clear();
}
}
/**
* Helper method for entrySet.remove
*
* @param entry
*
* @return true
when the element was found and removed.
*/
protected synchronized boolean findAndRemoveEntry(Map.Entry entry)
{
Object key = entry.getKey();
Object v = get(key);
if (v != null && v.equals(entry.getValue()))
{
remove(key);
return true;
}
else
{
return false;
}
}
/**
* Returns an enumeration of the keys in this table.
*
* @return an enumeration of the keys in this table.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public Enumeration keys()
{
return new KeyIterator();
}
/**
* Returns an enumeration of the values in this table. Use the Enumeration
* methods on the returned object to fetch the elements sequentially.
*
* @return an enumeration of the values in this table.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public Enumeration elements()
{
return new ValueIterator();
}
/**
* ConcurrentReaderHashMap collision list entry.
*/
protected static class Entry implements Map.Entry
{
/*
* The use of volatile for value field ensures that we can detect status
* changes without synchronization. The other fields are never changed,
* and are marked as final.
*/
protected final int hash;
protected final Object key;
protected final Entry next;
protected volatile Object value;
Entry(int hash, Object key, Object value, Entry next)
{
this.hash = hash;
this.key = key;
this.next = next;
this.value = value;
}
// Map.Entry Ops
/**
* @see Map.Entry#getKey()
*/
public Object getKey()
{
return key;
}
/**
* Get the value. Note: In an entrySet or entrySet.iterator, unless the
* set or iterator is used under synchronization of the table as a whole
* (or you can otherwise guarantee lack of concurrent modification),
* getValue might return null, reflecting the fact
* that the entry has been concurrently removed. However, there are no
* assurances that concurrent removals will be reflected using this
* method.
*
* @return the current value, or null if the entry has been detectably
* removed.
*/
public Object getValue()
{
return value;
}
/**
* Set the value of this entry. Note: In an entrySet or
* entrySet.iterator), unless the set or iterator is used under
* synchronization of the table as a whole (or you can otherwise
* guarantee lack of concurrent modification), setValue is
* not strictly guaranteed to actually replace the value field obtained
* via the get operation of the underlying hash table in
* multithreaded applications. If iterator-wide synchronization is not
* used, and any other concurrent put or remove
* operations occur, sometimes even to other entries, then
* this change is not guaranteed to be reflected in the hash table. (It
* might, or it might not. There are no assurances either way.)
*
* @param value
* the new value.
* @return the previous value, or null if entry has been detectably
* removed.
* @exception NullPointerException
* if the value is null
.
*
*/
public Object setValue(Object value)
{
if (value == null)
{
throw new IllegalArgumentException("Value must not be null");
}
Object oldValue = this.value;
this.value = value;
return oldValue;
}
/**
* @see Object#equals(java.lang.Object)
*/
public boolean equals(Object o)
{
if (!(o instanceof Map.Entry))
{
return false;
}
Map.Entry e = (Map.Entry)o;
return (key.equals(e.getKey()) && value.equals(e.getValue()));
}
/**
* @see Object#hashCode()
*/
public int hashCode()
{
return key.hashCode() ^ value.hashCode();
}
/**
* @see Object#toString()
*/
public String toString()
{
return key + "=" + value;
}
}
protected class HashIterator implements Iterator, Enumeration
{
protected final Entry[] tab; // snapshot of table
protected int index; // current slot
protected Entry entry = null; // current node of slot
protected Object currentKey; // key for current node
protected Object currentValue; // value for current node
protected Entry lastReturned = null; // last node returned by next
protected HashIterator()
{
tab = ConcurrentReaderHashMap.this.getTableForReading();
index = tab.length - 1;
}
/**
* @see Enumeration#hasMoreElements()
*/
public boolean hasMoreElements()
{
return hasNext();
}
/**
* @see Enumeration#nextElement()
*/
public Object nextElement()
{
return next();
}
/**
* @see Iterator#hasNext()
*/
public boolean hasNext()
{
/*
* currentkey and currentValue are set here to ensure that next()
* returns normally if hasNext() returns true. This avoids surprises
* especially when final element is removed during traversal --
* instead, we just ignore the removal during current traversal.
*/
for (;;)
{
if (entry != null)
{
Object v = entry.value;
if (v != null)
{
currentKey = entry.key;
currentValue = v;
return true;
}
else
{
entry = entry.next;
}
}
while (entry == null && index >= 0)
{
entry = tab[index--];
}
if (entry == null)
{
currentKey = currentValue = null;
return false;
}
}
}
protected Object returnValueOfNext()
{
return entry;
}
/**
* @see Iterator#next()
*/
public Object next()
{
if (currentKey == null && !hasNext())
{
throw new NoSuchElementException();
}
Object result = returnValueOfNext();
lastReturned = entry;
currentKey = currentValue = null;
entry = entry.next;
return result;
}
/**
* @see Iterator#remove()
*/
public void remove()
{
if (lastReturned == null)
{
throw new IllegalStateException();
}
ConcurrentReaderHashMap.this.remove(lastReturned.key);
lastReturned = null;
}
}
protected class KeyIterator extends HashIterator
{
protected Object returnValueOfNext()
{
return currentKey;
}
}
protected class ValueIterator extends HashIterator
{
protected Object returnValueOfNext()
{
return currentValue;
}
}
/**
* Save the state of the ConcurrentReaderHashMap instance to a
* stream (i.e., serialize it).
* @param s
* @throws IOException
*
* @serialData The capacity of the ConcurrentReaderHashMap (the
* length of the bucket array) is emitted (int), followed by the
* size of the ConcurrentReaderHashMap (the number of
* key-value mappings), followed by the key (Object) and value
* (Object) for each key-value mapping represented by the
* ConcurrentReaderHashMap The key-value mappings are emitted in
* no particular order.
*/
private synchronized void writeObject(java.io.ObjectOutputStream s) throws IOException
{
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
s.writeInt(table.length);
// Write out size (number of Mappings)
s.writeInt(count);
// Write out keys and values (alternating)
for (int index = table.length - 1; index >= 0; index--)
{
Entry entry = table[index];
while (entry != null)
{
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
}
/**
* Reconstitute the ConcurrentReaderHashMap instance from a
* stream (i.e., deserialize it).
* @param s
* @throws IOException
* @throws ClassNotFoundException
*/
private synchronized void readObject(java.io.ObjectInputStream s) throws IOException,
ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();
// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];
// Read in size (number of Mappings)
int size = s.readInt();
// Read the keys and values, and put the mappings in the table
for (int i = 0; i < size; i++)
{
Object key = s.readObject();
Object value = s.readObject();
put(key, value);
}
}
/**
* Return the number of slots in this table
* @return number of slots in this table
*/
public synchronized int capacity()
{
return table.length;
}
/**
* Return the load factor
* @return the load factor
*/
public float loadFactor()
{
return loadFactor;
}
}