Fraction
is a Number
implementation that
* stores fractions accurately.
This class is immutable, and interoperable with most methods that accept
* a Number
.
Fraction
representation of 0.
*/
public static final Fraction ZERO = new Fraction(0, 1);
/**
* Fraction
representation of 1.
*/
public static final Fraction ONE = new Fraction(1, 1);
/**
* Fraction
representation of 1/2.
*/
public static final Fraction ONE_HALF = new Fraction(1, 2);
/**
* Fraction
representation of 1/3.
*/
public static final Fraction ONE_THIRD = new Fraction(1, 3);
/**
* Fraction
representation of 2/3.
*/
public static final Fraction TWO_THIRDS = new Fraction(2, 3);
/**
* Fraction
representation of 1/4.
*/
public static final Fraction ONE_QUARTER = new Fraction(1, 4);
/**
* Fraction
representation of 2/4.
*/
public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
/**
* Fraction
representation of 3/4.
*/
public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
/**
* Fraction
representation of 1/5.
*/
public static final Fraction ONE_FIFTH = new Fraction(1, 5);
/**
* Fraction
representation of 2/5.
*/
public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
/**
* Fraction
representation of 3/5.
*/
public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
/**
* Fraction
representation of 4/5.
*/
public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
/**
* The numerator number part of the fraction (the three in three sevenths).
*/
private final int numerator;
/**
* The denominator number part of the fraction (the seven in three sevenths).
*/
private final int denominator;
/**
* Cached output hashCode (class is immutable).
*/
private transient int hashCode = 0;
/**
* Cached output toString (class is immutable).
*/
private transient String toString = null;
/**
* Cached output toProperString (class is immutable).
*/
private transient String toProperString = null;
/**
* Constructs a Fraction
instance with the 2 parts
* of a fraction Y/Z.
Creates a Fraction
instance with the 2 parts
* of a fraction Y/Z.
Any negative signs are resolved to be on the numerator.
* * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' * @return a new fraction instance * @throws ArithmeticException if the denomiator iszero
*/
public static Fraction getFraction(int numerator, int denominator) {
if (denominator == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (denominator < 0) {
if (numerator==Integer.MIN_VALUE ||
denominator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
numerator = -numerator;
denominator = -denominator;
}
return new Fraction(numerator, denominator);
}
/**
* Creates a Fraction
instance with the 3 parts
* of a fraction X Y/Z.
The negative sign must be passed in on the whole number part.
* * @param whole the whole number, for example the one in 'one and three sevenths' * @param numerator the numerator, for example the three in 'one and three sevenths' * @param denominator the denominator, for example the seven in 'one and three sevenths' * @return a new fraction instance * @throws ArithmeticException if the denomiator iszero
* @throws ArithmeticException if the denominator is negative
* @throws ArithmeticException if the numerator is negative
* @throws ArithmeticException if the resulting numerator exceeds
* Integer.MAX_VALUE
*/
public static Fraction getFraction(int whole, int numerator, int denominator) {
if (denominator == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (denominator < 0) {
throw new ArithmeticException("The denominator must not be negative");
}
if (numerator < 0) {
throw new ArithmeticException("The numerator must not be negative");
}
long numeratorValue;
if (whole < 0) {
numeratorValue = whole * (long)denominator - numerator;
} else {
numeratorValue = whole * (long)denominator + numerator;
}
if (numeratorValue < Integer.MIN_VALUE ||
numeratorValue > Integer.MAX_VALUE) {
throw new ArithmeticException("Numerator too large to represent as an Integer.");
}
return new Fraction((int) numeratorValue, denominator);
}
/**
* Creates a reduced Fraction
instance with the 2 parts
* of a fraction Y/Z.
For example, if the input parameters represent 2/4, then the created * fraction will be 1/2.
* *Any negative signs are resolved to be on the numerator.
* * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' * @return a new fraction instance, with the numerator and denominator reduced * @throws ArithmeticException if the denominator iszero
*/
public static Fraction getReducedFraction(int numerator, int denominator) {
if (denominator == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (numerator==0) {
return ZERO; // normalize zero.
}
// allow 2^k/-2^31 as a valid fraction (where k>0)
if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
numerator/=2; denominator/=2;
}
if (denominator < 0) {
if (numerator==Integer.MIN_VALUE ||
denominator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
numerator = -numerator;
denominator = -denominator;
}
// simplify fraction.
int gcd = greatestCommonDivisor(numerator, denominator);
numerator /= gcd;
denominator /= gcd;
return new Fraction(numerator, denominator);
}
/**
* Creates a Fraction
instance from a double
value.
This method uses the * continued fraction algorithm, computing a maximum of * 25 convergents and bounding the denominator by 10,000.
* * @param value the double value to convert * @return a new fraction instance that is close to the value * @throws ArithmeticException if|value| > Integer.MAX_VALUE
* or value = NaN
* @throws ArithmeticException if the calculated denominator is zero
* @throws ArithmeticException if the the algorithm does not converge
*/
public static Fraction getFraction(double value) {
int sign = (value < 0 ? -1 : 1);
value = Math.abs(value);
if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
throw new ArithmeticException
("The value must not be greater than Integer.MAX_VALUE or NaN");
}
int wholeNumber = (int) value;
value -= wholeNumber;
int numer0 = 0; // the pre-previous
int denom0 = 1; // the pre-previous
int numer1 = 1; // the previous
int denom1 = 0; // the previous
int numer2 = 0; // the current, setup in calculation
int denom2 = 0; // the current, setup in calculation
int a1 = (int) value;
int a2 = 0;
double x1 = 1;
double x2 = 0;
double y1 = value - a1;
double y2 = 0;
double delta1, delta2 = Double.MAX_VALUE;
double fraction;
int i = 1;
// System.out.println("---");
do {
delta1 = delta2;
a2 = (int) (x1 / y1);
x2 = y1;
y2 = x1 - a2 * y1;
numer2 = a1 * numer1 + numer0;
denom2 = a1 * denom1 + denom0;
fraction = (double) numer2 / (double) denom2;
delta2 = Math.abs(value - fraction);
// System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
a1 = a2;
x1 = x2;
y1 = y2;
numer0 = numer1;
denom0 = denom1;
numer1 = numer2;
denom1 = denom2;
i++;
// System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
} while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25));
if (i == 25) {
throw new ArithmeticException("Unable to convert double to fraction");
}
return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
}
/**
* Creates a Fraction from a String
.
The formats accepted are:
* *double
String containing a dotnull
* @return the new Fraction
instance
* @throws IllegalArgumentException if the string is null
* @throws NumberFormatException if the number format is invalid
*/
public static Fraction getFraction(String str) {
if (str == null) {
throw new IllegalArgumentException("The string must not be null");
}
// parse double format
int pos = str.indexOf('.');
if (pos >= 0) {
return getFraction(Double.parseDouble(str));
}
// parse X Y/Z format
pos = str.indexOf(' ');
if (pos > 0) {
int whole = Integer.parseInt(str.substring(0, pos));
str = str.substring(pos + 1);
pos = str.indexOf('/');
if (pos < 0) {
throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
} else {
int numer = Integer.parseInt(str.substring(0, pos));
int denom = Integer.parseInt(str.substring(pos + 1));
return getFraction(whole, numer, denom);
}
}
// parse Y/Z format
pos = str.indexOf('/');
if (pos < 0) {
// simple whole number
return getFraction(Integer.parseInt(str), 1);
} else {
int numer = Integer.parseInt(str.substring(0, pos));
int denom = Integer.parseInt(str.substring(pos + 1));
return getFraction(numer, denom);
}
}
// Accessors
//-------------------------------------------------------------------
/**
* Gets the numerator part of the fraction.
* *This method may return a value greater than the denominator, an * improper fraction, such as the seven in 7/4.
* * @return the numerator fraction part */ public int getNumerator() { return numerator; } /** *Gets the denominator part of the fraction.
* * @return the denominator fraction part */ public int getDenominator() { return denominator; } /** *Gets the proper numerator, always positive.
* *An improper fraction 7/4 can be resolved into a proper one, 1 3/4. * This method returns the 3 from the proper fraction.
* *If the fraction is negative such as -7/4, it can be resolved into * -1 3/4, so this method returns the positive proper numerator, 3.
* * @return the numerator fraction part of a proper fraction, always positive */ public int getProperNumerator() { return Math.abs(numerator % denominator); } /** *Gets the proper whole part of the fraction.
* *An improper fraction 7/4 can be resolved into a proper one, 1 3/4. * This method returns the 1 from the proper fraction.
* *If the fraction is negative such as -7/4, it can be resolved into * -1 3/4, so this method returns the positive whole part -1.
* * @return the whole fraction part of a proper fraction, that includes the sign */ public int getProperWhole() { return numerator / denominator; } // Number methods //------------------------------------------------------------------- /** *Gets the fraction as an int
. This returns the whole number
* part of the fraction.
Gets the fraction as a long
. This returns the whole number
* part of the fraction.
Gets the fraction as a float
. This calculates the fraction
* as the numerator divided by denominator.
float
*/
public float floatValue() {
return ((float) numerator) / ((float) denominator);
}
/**
* Gets the fraction as a double
. This calculates the fraction
* as the numerator divided by denominator.
double
*/
public double doubleValue() {
return ((double) numerator) / ((double) denominator);
}
// Calculations
//-------------------------------------------------------------------
/**
* Reduce the fraction to the smallest values for the numerator and * denominator, returning the result.
* *For example, if this fraction represents 2/4, then the result * will be 1/2.
* * @return a new reduced fraction instance, or this if no simplification possible */ public Fraction reduce() { if (numerator == 0) { return equals(ZERO) ? this : ZERO; } int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); if (gcd == 1) { return this; } return Fraction.getFraction(numerator / gcd, denominator / gcd); } /** *Gets a fraction that is the inverse (1/fraction) of this one.
* *The returned fraction is not reduced.
* * @return a new fraction instance with the numerator and denominator * inverted. * @throws ArithmeticException if the fraction represents zero. */ public Fraction invert() { if (numerator == 0) { throw new ArithmeticException("Unable to invert zero."); } if (numerator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: can't negate numerator"); } if (numerator<0) { return new Fraction(-denominator, -numerator); } else { return new Fraction(denominator, numerator); } } /** *Gets a fraction that is the negative (-fraction) of this one.
* *The returned fraction is not reduced.
* * @return a new fraction instance with the opposite signed numerator */ public Fraction negate() { // the positive range is one smaller than the negative range of an int. if (numerator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: too large to negate"); } return new Fraction(-numerator, denominator); } /** *Gets a fraction that is the positive equivalent of this one.
*More precisely: (fraction >= 0 ? this : -fraction)
The returned fraction is not reduced.
* * @returnthis
if it is positive, or a new positive fraction
* instance with the opposite signed numerator
*/
public Fraction abs() {
if (numerator >= 0) {
return this;
}
return negate();
}
/**
* Gets a fraction that is raised to the passed in power.
* *The returned fraction is in reduced form.
* * @param power the power to raise the fraction to * @returnthis
if the power is one, ONE
if the power
* is zero (even if the fraction equals ZERO) or a new fraction instance
* raised to the appropriate power
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* Integer.MAX_VALUE
*/
public Fraction pow(int power) {
if (power == 1) {
return this;
} else if (power == 0) {
return ONE;
} else if (power < 0) {
if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
return this.invert().pow(2).pow(-(power/2));
}
return this.invert().pow(-power);
} else {
Fraction f = this.multiplyBy(this);
if ((power % 2) == 0) { // if even...
return f.pow(power/2);
} else { // if odd...
return f.pow(power/2).multiplyBy(this);
}
}
}
/**
* Gets the greatest common divisor of the absolute value of * two numbers, using the "binary gcd" method which avoids * division and modulo operations. See Knuth 4.5.2 algorithm B. * This algorithm is due to Josef Stein (1961).
* * @param u a non-zero number * @param v a non-zero number * @return the greatest common divisor, never zero */ private static int greatestCommonDivisor(int u, int v) { //if either op. is abs 0 or 1, return 1: if (Math.abs(u) <= 1 || Math.abs(v) <= 1) { return 1; } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) if (u>0) { u=-u; } // make u negative if (v>0) { v=-v; } // make v negative // B1. [Find power of 2] int k=0; while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... u/=2; v/=2; k++; // cast out twos. } if (k==31) { throw new ArithmeticException("overflow: gcd is 2^31"); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = ((u&1)==1) ? v : -(u/2)/*B3*/; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t&1)==0) { // while t is even.. t/=2; // cast out twos } // B5 [reset max(u,v)] if (t>0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u)/2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t!=0); return -u*(1<x*y
* @throws ArithmeticException if the result can not be represented as
* an int
*/
private static int mulPosAndCheck(int x, int y) {
/* assert x>=0 && y>=0; */
long m = ((long)x)*((long)y);
if (m > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: mulPos");
}
return (int)m;
}
/**
* Add two integers, checking for overflow.
*
* @param x an addend
* @param y an addend
* @return the sum x+y
* @throws ArithmeticException if the result can not be represented as
* an int
*/
private static int addAndCheck(int x, int y) {
long s = (long)x+(long)y;
if (s < Integer.MIN_VALUE ||
s > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: add");
}
return (int)s;
}
/**
* Subtract two integers, checking for overflow.
*
* @param x the minuend
* @param y the subtrahend
* @return the difference x-y
* @throws ArithmeticException if the result can not be represented as
* an int
*/
private static int subAndCheck(int x, int y) {
long s = (long)x-(long)y;
if (s < Integer.MIN_VALUE ||
s > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: add");
}
return (int)s;
}
/**
* Adds the value of this fraction to another, returning the result in reduced form. * The algorithm follows Knuth, 4.5.1.
* * @param fraction the fraction to add, must not benull
* @return a Fraction
instance with the resulting values
* @throws IllegalArgumentException if the fraction is null
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* Integer.MAX_VALUE
*/
public Fraction add(Fraction fraction) {
return addSub(fraction, true /* add */);
}
/**
* Subtracts the value of another fraction from the value of this one, * returning the result in reduced form.
* * @param fraction the fraction to subtract, must not benull
* @return a Fraction
instance with the resulting values
* @throws IllegalArgumentException if the fraction is null
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an int
.
*/
public Fraction subtract(Fraction fraction) {
return addSub(fraction, false /* subtract */);
}
/**
* Implement add and subtract using algorithm described in Knuth 4.5.1.
*
* @param fraction the fraction to subtract, must not be null
* @param isAdd true to add, false to subtract
* @return a Fraction
instance with the resulting values
* @throws IllegalArgumentException if the fraction is null
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an int
.
*/
private Fraction addSub(Fraction fraction, boolean isAdd) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
// zero is identity for addition.
if (numerator == 0) {
return isAdd ? fraction : fraction.negate();
}
if (fraction.numerator == 0) {
return this;
}
// if denominators are randomly distributed, d1 will be 1 about 61%
// of the time.
int d1 = greatestCommonDivisor(denominator, fraction.denominator);
if (d1==1) {
// result is ( (u*v' +/- u'v) / u'v')
int uvp = mulAndCheck(numerator, fraction.denominator);
int upv = mulAndCheck(fraction.numerator, denominator);
return new Fraction
(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv),
mulPosAndCheck(denominator, fraction.denominator));
}
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
// exercise 7. we're going to use a BigInteger.
// t = u(v'/d1) +/- v(u'/d1)
BigInteger uvp = BigInteger.valueOf(numerator)
.multiply(BigInteger.valueOf(fraction.denominator/d1));
BigInteger upv = BigInteger.valueOf(fraction.numerator)
.multiply(BigInteger.valueOf(denominator/d1));
BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
// but d2 doesn't need extra precision because
// d2 = gcd(t,d1) = gcd(t mod d1, d1)
int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1);
// result is (t/d2) / (u'/d1)(v'/d2)
BigInteger w = t.divide(BigInteger.valueOf(d2));
if (w.bitLength() > 31) {
throw new ArithmeticException
("overflow: numerator too large after multiply");
}
return new Fraction
(w.intValue(),
mulPosAndCheck(denominator/d1, fraction.denominator/d2));
}
/**
* Multiplies the value of this fraction by another, returning the * result in reduced form.
* * @param fraction the fraction to multiply by, must not benull
* @return a Fraction
instance with the resulting values
* @throws IllegalArgumentException if the fraction is null
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* Integer.MAX_VALUE
*/
public Fraction multiplyBy(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (numerator == 0 || fraction.numerator == 0) {
return ZERO;
}
// knuth 4.5.1
// make sure we don't overflow unless the result *must* overflow.
int d1 = greatestCommonDivisor(numerator, fraction.denominator);
int d2 = greatestCommonDivisor(fraction.numerator, denominator);
return getReducedFraction
(mulAndCheck(numerator/d1, fraction.numerator/d2),
mulPosAndCheck(denominator/d2, fraction.denominator/d1));
}
/**
* Divide the value of this fraction by another.
* * @param fraction the fraction to divide by, must not benull
* @return a Fraction
instance with the resulting values
* @throws IllegalArgumentException if the fraction is null
* @throws ArithmeticException if the fraction to divide by is zero
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* Integer.MAX_VALUE
*/
public Fraction divideBy(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (fraction.numerator == 0) {
throw new ArithmeticException("The fraction to divide by must not be zero");
}
return multiplyBy(fraction.invert());
}
// Basics
//-------------------------------------------------------------------
/**
* Compares this fraction to another object to test if they are equal.
. * *To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.
* * @param obj the reference object with which to compare * @returntrue
if this object is equal
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (obj instanceof Fraction == false) {
return false;
}
Fraction other = (Fraction) obj;
return (getNumerator() == other.getNumerator() &&
getDenominator() == other.getDenominator());
}
/**
* Gets a hashCode for the fraction.
* * @return a hash code value for this object */ public int hashCode() { if (hashCode == 0) { // hashcode update should be atomic. hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); } return hashCode; } /** *Compares this object to another based on size.
* *Note: this class has a natural ordering that is inconsistent
* with equals, because, for example, equals treats 1/2 and 2/4 as
* different, whereas compareTo treats them as equal.
*
* @param object the object to compare to
* @return -1 if this is less, 0 if equal, +1 if greater
* @throws ClassCastException if the object is not a Fraction
* @throws NullPointerException if the object is null
*/
public int compareTo(Object object) {
Fraction other = (Fraction) object;
if (this==other) {
return 0;
}
if (numerator == other.numerator && denominator == other.denominator) {
return 0;
}
// otherwise see which is less
long first = (long) numerator * (long) other.denominator;
long second = (long) other.numerator * (long) denominator;
if (first == second) {
return 0;
} else if (first < second) {
return -1;
} else {
return 1;
}
}
/**
*
Gets the fraction as a String
.
The format used is 'numerator/denominator' always.
*
* @return a String
form of the fraction
*/
public String toString() {
if (toString == null) {
toString = new StringBuffer(32)
.append(getNumerator())
.append('/')
.append(getDenominator()).toString();
}
return toString;
}
/**
*
Gets the fraction as a proper String
in the format X Y/Z.
The format used in 'wholeNumber numerator/denominator'. * If the whole number is zero it will be ommitted. If the numerator is zero, * only the whole number is returned.
* * @return aString
form of the fraction
*/
public String toProperString() {
if (toProperString == null) {
if (numerator == 0) {
toProperString = "0";
} else if (numerator == denominator) {
toProperString = "1";
} else if (numerator == -1 * denominator) {
toProperString = "-1";
} else if ((numerator>0?-numerator:numerator) < -denominator) {
// note that we do the magnitude comparison test above with
// NEGATIVE (not positive) numbers, since negative numbers
// have a larger range. otherwise numerator==Integer.MIN_VALUE
// is handled incorrectly.
int properNumerator = getProperNumerator();
if (properNumerator == 0) {
toProperString = Integer.toString(getProperWhole());
} else {
toProperString = new StringBuffer(32)
.append(getProperWhole()).append(' ')
.append(properNumerator).append('/')
.append(getDenominator()).toString();
}
} else {
toProperString = new StringBuffer(32)
.append(getNumerator()).append('/')
.append(getDenominator()).toString();
}
}
return toProperString;
}
}