Mega Code Archive

 
Categories / Delphi / Algorithm Math
 

Inline Assembler in Delphi (III) Static Arrays

Title: Inline Assembler in Delphi (III) - Static Arrays Question: How to work with static arrays in inline assembler Answer: Inline Assembler in Delphi (III) Static Arrays By Ernesto De Spirito edspirito@latiumsoftware.com Passing static arrays as parameters Static arrays parameters are passed as pointers to the first element of the array, independently of whether the parameter is passed by value or by reference (either as "var" or as "const"). Given the following declarations... const ARRAY_MAX = 5; type TArrayOfInt = packed array [0..ARRAY_MAX] of longint; var a, b: TArrayOfInt; procedure InitializeArray(var a: TArrayOfInt); var i: integer; begin for i := 0 to ARRAY_MAX do a[i] := i; end; ...the call to the procedure InitializeArray in assembler would be like this: // In Object Pascal: // InitializeArray(a); // In Inline Assembler: asm mov eax, offset a // EAX := @a; call InitializeArray // InitializeArray; end; OFFSET is an assembler unitary operator that returns the address of a symbol. OFFSET is not applicable to local symbols. You should use the LEA opcode (see below), which is more "universal". Static arrays passed by value If the array is passed by value, it is responsibility of the called function to preserve the array. When a function needs to change the values of one or more elements of an array passed by value, normally it creates a local copy and works on the copy. The compiler creates a copy for us in the "begin" of Pascal procedures and functions, but in full assembler procedures and functions we have to do it by ourselves. One way of doing it is like this: procedure OperateOnArrayPassedByValue(a: TArrayOfInt); var _a: TArrayOfInt; asm // Copy the elements of "a" (parameter) in "_a" (local copy) push esi // Saves ESI on the stack push edi // Saves EDI on the stack mov esi, eax // ESI := EAX; // @a lea edi, _a // EDI := @_a; mov eax, edi // EAX := EDI; // @_a mov ecx, type TArrayOfInt // ECX := sizeof(TArrayOfInt); rep movsb // Move(ESI^, EDI^, ECX); pop edi // Restores EDI from the stack pop esi // Restores ESI from the stack // Here goes the rest of the function. We'll work on "_a" (the // local copy), whose first element is now pointed by EAX. end; The new things here are the LEA and MOVSB opcodes, the REP prefix, and the TYPE operator, described below: LEA (Load Effective Address) Moves to the first operand the address of the second. Here we compare LEA with MOV: Instruction Translated as Effect ------------------------------------------------------------------- lea eax, localvar lea eax, [ebp-$04] EAX := @localvar; EAX := EBP - $04; mov eax, localvar mov eax, [ebp-$04] EAX := localvar; EAX := (EBP - $04)^; MOVSB (MOVe String Byte) Copies the byte pointed by ESI to the location pointed by EDI, and increments ESI and EDI so they point to the next byte. The work of MOVSB can be described as follows: ESI^ := EDI^; // Assume ESI and EDI are of type PChar Inc(ESI); Inc(EDI); Notes: MOVSW and MOVSD are the Word (16-bit) and DWord (32-bit) versionsrespectively (ESI and EDI are incremented by 2 and 4 respectively). The registers are decremented if the Direction Flag is set. REP --- The REP prefix is used in string operations to repeat the operation decrementing ECX until ECX is zero. The work of REP could be described as follows: // rep string_instruction @@rep: string_instruction loop @@rep Notes: REP is not a shorthand for a code like the above. It works a lot faster. The value of ECX is not checked at the beginning of the loop (if ECX is zero, the instruction would be repeated 2^32 times, but will generate an AV long before that, as soon as ESI or EDI point to an invalid memory location). TYPE The TYPE operator is a unary operator evaluated at compile time, and it returns the size in bytes of the operand, which must be a data type. For example, TYPE WORD will return 2 and TYPE INTEGER will return 4. Accessing the elements of an array To access an element a[i] we need the values "@a[0]" and "i" in registers (like EDX and ECX, for example), and then we can use memory addressing as follows: lea edx, a // EDX := @a; mov ecx, i // ECX := i; mov ax, [edx+ecx*type integer] // AX := EDX[ECX]; // a[i]; // PWord(EDX + ECX * SizeOf(integer))^ In the example, we assumed that the elements have 2 bytes (we moved the value of a[i] to AX, a 16-bit register), that the array is not a packed one (each element actually occupies 4 bytes, the size of an integer, so this value was used to compute the position of the element), and that the array is zero-based. For example: var a: array [0..N] of word = (1, 2, 3, 6, ...); +------ EDX = @a | v +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- | 1 | 0 | | | 2 | 0 | | | 3 | 0 | | | 6 | 0 | | | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- a[0] a[1] a[2] a[3] [edx] [edx+04] [edx+08] [edx+12] If the array is not zero-based, we have to adjust the value of the index to make it zero-based before addressing the element. Examples: // a[1..100] : mov ecx, i // ECX := i; dec ecx // Dec(ECX); // Adjust ECX : // a[-10..10] : mov ecx, i // ECX := i; add ecx, 10 // Inc(ECX, 10); // Adjust ECX : The procedure InitializeArray (introduced above) can be implemented in assembler like this: procedure InitializeArray(var a: TArrayOfInt); asm // EAX = PByte(@a[0]); xor ecx, ecx // ECX := 0; @@loop: mov [eax+ecx*type integer], ecx // PInteger(EAX+ECX*4)^ := ECX; // ...or EAX[ECX] := ECX; inc ecx // ECX := ECX + 1; cmp ecx, ARRAY_MAX // if ECX jle @@loop // goto @@loop; end; Or like this: procedure InitializeArray(var a: TArrayOfInt); asm // EAX = @a[0]; xor ecx, ecx // ECX := 0; @@loop: mov [eax], ecx // EAX^ := ECX; inc ecx // Inc(ECX); add eax, type integer // Inc(EAX); // Point to the next element cmp ecx, ARRAY_MAX // if ECX jle @@loop // goto @@loop; end; Returning array values Functions returning arrays receive an additional last parameter which is the pointer to the memory location where they should place their return value (memory is allocated and freed if necessary by the caller). For example, let's consider the following function: function ReverseArray(const a: TArrayOfInt): TArrayOfInt; var i: integer; begin for i := 0 to ARRAY_MAX do Result[i] := a[ARRAY_MAX-i]; end; The function receives two parameters: EAX = the address of the first element of the array "a" EDX = the address of the first element of Result The function can be rewritten in assembler as follows: function ReverseArray(const a: TArrayOfInt): TArrayOfInt; asm // EAX = @a[0]; EDX = @Result[0]; push ebx // Save EBX mov ebx, eax // EBX := EAX; xor ecx, ecx // ECX := 0; @@loop: mov eax, ARRAY_MAX sub eax, ecx // EAX := ARRAY_MAX-ECX; mov eax, [ebx+eax*type integer] // EAX := EBX[EAX]; mov [edx+ecx*type integer], eax // EDX[ECX] := EAX; inc ecx // ECX := ECX + 1; cmp ecx, ARRAY_MAX // if ECX jle @@loop // goto @@loop; pop ebx // Restore EBX end; Well, this is it for now. In the next issue we'll see how to work with records. Previous: Inline Assembler in Delphi (II) - ANSI strings Next: Inline Assembler in Delphi (IV) - Records